早教吧作业答案频道 -->数学-->
lim[√(n^2+pn)-(qn+1)]=q求p的值n→∞A,2B,-2C,4D,-4
题目详情
lim [√(n^2+pn) -(qn+1)]=q
求p的值
n→∞
A,2 B,-2 C,4 D,-4
求p的值
n→∞
A,2 B,-2 C,4 D,-4
▼优质解答
答案和解析
If q +Inf}[(n^2 + pn)^(1/2) - (qn+1)]
= lim_{n->+Inf}[(n^2 + pn)^(1/2) + (-q)n -1]
= +Inf.
So,q > 0.
lim_{n->+Inf}[(n^2 + pn)^(1/2) - (qn+1)]
= lim_{n->+Inf}[(n^2 + pn) - (qn+1)^2]/}[(n^2 + pn)^(1/2) + (qn+1)]
= lim_{n->+Inf}[n^2(1 - q^2) + n(p - 2q) - 1]/[(n^2 + pn)^(1/2) + (qn+1)]
= lim_{n->+Inf}[n(1 - q^2) + (p - 2q) - 1/n]/[(1 + p/n)^(1/2) + (q+1/n)]
So,q = 1.
lim_{n->+Inf}[(n^2 + pn)^(1/2) - (qn+1)]
= lim_{n->+Inf}[(n^2 + pn)^(1/2) - (n+1)]
= lim_{n->+Inf}[(p - 2) - 1/n]/[(1 + p/n)^(1/2) + (1+1/n)]
= (p - 2)/[1 + 1]
= (p - 2)/2
= q
= 1,
So,p = 2q + 2 = 4.
= lim_{n->+Inf}[(n^2 + pn)^(1/2) + (-q)n -1]
= +Inf.
So,q > 0.
lim_{n->+Inf}[(n^2 + pn)^(1/2) - (qn+1)]
= lim_{n->+Inf}[(n^2 + pn) - (qn+1)^2]/}[(n^2 + pn)^(1/2) + (qn+1)]
= lim_{n->+Inf}[n^2(1 - q^2) + n(p - 2q) - 1]/[(n^2 + pn)^(1/2) + (qn+1)]
= lim_{n->+Inf}[n(1 - q^2) + (p - 2q) - 1/n]/[(1 + p/n)^(1/2) + (q+1/n)]
So,q = 1.
lim_{n->+Inf}[(n^2 + pn)^(1/2) - (qn+1)]
= lim_{n->+Inf}[(n^2 + pn)^(1/2) - (n+1)]
= lim_{n->+Inf}[(p - 2) - 1/n]/[(1 + p/n)^(1/2) + (1+1/n)]
= (p - 2)/[1 + 1]
= (p - 2)/2
= q
= 1,
So,p = 2q + 2 = 4.
看了 lim[√(n^2+pn)-...的网友还看了以下:
求此高一数学题的过程:已知圆O1和圆O2的半径都等于1,O1O2=4,过动点P分别作圆O圆O的切线 2020-06-04 …
编写算法,求一元多项式Pn(x)=a0+a1x+a2x2+a3x3+...+anxn的值Pn(x0 2020-07-09 …
已知两点M(-1,0),N(1,0),且点P使向量PM·向量PN-向量MP·向量MN=向量NM·向 2020-07-21 …
如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为 2020-07-24 …
如图,∠AOB=45°,OC平分∠AOB,点M在OB上,且OM=32,P为OC上的一动点,N为OB 2020-07-24 …
在圆内接正N(N大于等于3)边形中(1)RN是边心距,PN是周长,SN是面积求证,SN=1/2=P 2020-08-03 …
(2013•重庆)对正整数n,记In={1,2,3…,n},Pn={|m∈In,k∈In}.(1)求 2020-11-12 …
将一枚均匀的硬币连续抛掷n次,以Pn表示未出现连续3次正面的概率。(1)求P1、P2、P3和P4;( 2020-12-23 …
如图是一个近似“囧”的图形,若已知四边形ABCD是一个边长为2的正方形,点P,M,N分别是边AD、A 2021-01-04 …
(2013•重庆)对正整数n,记In={1,2,3…,n},Pn={mk|m∈In,k∈In}.(1 2021-01-18 …