早教吧作业答案频道 -->数学-->
高等代数重根问题,麻烦老师有空看看我们知道定理”如果不可约多项式p(x)是f(x)的k重因式(k≥1),那么它是导数f'(x)的k-1重因式”反过来不一定成立,为什么加上条件f'(x)|f(x)就一定成立呢?我看
题目详情
高等代数重根问题,麻烦老师有空看看
我们知道定理”如果不可约多项式p(x)是f(x)的k 重因式(k≥1),那么它是导数f'(x)的k-1重因式”反过来不一定成立,为什么加上条件f'(x)|f(x)就一定成立呢?我看到一道证明题“如果f'(x)|f(x),证明f(x)有n重根,n为f(x)的次数”直接这样用的.
我们知道定理”如果不可约多项式p(x)是f(x)的k 重因式(k≥1),那么它是导数f'(x)的k-1重因式”反过来不一定成立,为什么加上条件f'(x)|f(x)就一定成立呢?我看到一道证明题“如果f'(x)|f(x),证明f(x)有n重根,n为f(x)的次数”直接这样用的.
▼优质解答
答案和解析
若设不可约多项式p是f‘的p-1重因式,记f'=gp^(k-1),且(p,g)=1
若f'|f,则可设f=hf'=hgp^(k-1) => f'=(hg)'p^(k-1)+(k-1)hgp^(k-2)
=[(hg)'p+(k-1)hg]p^(k-2),∴p|(hg)'p+(k-1)hg
即p|hg => p|h,可记h=pq,则f=qgp^k,若p|q,则p^(k+1)|f
∴p^k|f',这与p为f'的k-1重因式矛盾,∴(p,q)=1,即(p,qg)=1
即p为f的k重因式
若f'|f,则可设f=hf'=hgp^(k-1) => f'=(hg)'p^(k-1)+(k-1)hgp^(k-2)
=[(hg)'p+(k-1)hg]p^(k-2),∴p|(hg)'p+(k-1)hg
即p|hg => p|h,可记h=pq,则f=qgp^k,若p|q,则p^(k+1)|f
∴p^k|f',这与p为f'的k-1重因式矛盾,∴(p,q)=1,即(p,qg)=1
即p为f的k重因式
看了 高等代数重根问题,麻烦老师有...的网友还看了以下:
点点收敛为什么不一定连续?函数序列{fn}点点收敛到f,已知:fn连续,为什么f不一定连续?函数序 2020-04-07 …
只有F(x)=f(x)-f(-x)的定义域的意思不理解!已知f(x)的定义域为-4,3,则函数F( 2020-05-15 …
一个函数连续,一个函数不连续,那么这两个函数的商连续吗答案是不连续.设f(x)是连续的,F(x)是 2020-05-16 …
1.已知f(x)是定义在R上的奇函数,下列结论不一定成立的是()1.已知f(x)是定义在R上的奇函 2020-05-20 …
A.f不等于gB.f不一定等于gC.f等于gD.以上都不是 2020-05-26 …
已知f(x)在定义域(0,正无穷)且f(x)为增函数.f(xy)=f(x)+f(y),f(3)=1 2020-06-02 …
数学分析题》》关于连续的设f:D->实数,|f|:D->实数因为|f|(x)=|f(x)|举一个例 2020-06-03 …
已知函数f(x)=1/x+1,则函数f[(fx)]的定义域(x)=1/(x+1)的定义域为X不等于 2020-06-21 …
如何按椭圆的第二定义推出椭圆的标准方程为:x^2/a^2+y^2/b^2=1椭圆第二定义是:平面上 2020-06-21 …
已知函数f(x)=1+x/1-x的定义域为A,函数y=f(f(x))的定义域为B,则A∩B=?答案是 2020-12-08 …