早教吧作业答案频道 -->数学-->
已知f(x)是整系数多项式,存在四个不同的整数a,b,c,d,使得f(a)=f(b)=f(c)=f(d)=5求证不存在整数k,使得f(k)=8
题目详情
已知f(x)是整系数多项式,存在四个不同的整数a,b,c,d,使得f(a)=f(b)=f(c)=f(d)=5
求证不存在整数k,使得f(k)=8
求证不存在整数k,使得f(k)=8
▼优质解答
答案和解析
根据题给条件f(x)-5=(x-a)(x-b)(x-c)(x-d)q(x),q(x)仍是整系数多项式.
如果存在整数k使得f(k)=8,那么
8-5=3=(k-a)(k-b)(k-c)(k-d)q(k),
此式右端是5个整数的乘积,值为3.
这5个整数必然有一个等于3或者-3,以下分两种情况分别讨论:
第一种情况:如果有一个等于3的话,另外4个数的乘积为1,它们的取值情况为:
(1)4个数都是1,a,b,c,d中至少有三个相等的,与已知条件矛盾;
(2)两个1,两个-1,a,b,c,d中至少有两个相等的,也与已知条件矛盾.
第二种情况:如果有一个等于-3,另外4个数的乘积为-1,它们的取值情况为:
(1)1个是-1,另外三个是1;
(2)1个是1,另外三个是-1.
也不难分析这种情况也导致a,b,c,d中至少有两个相等的,也就是导致矛盾.
综上可知不存在整数k,使得f(k)=8.
注:可以看出来本题中的8可以改成别的数,只要和5的差是质数即可.
如果存在整数k使得f(k)=8,那么
8-5=3=(k-a)(k-b)(k-c)(k-d)q(k),
此式右端是5个整数的乘积,值为3.
这5个整数必然有一个等于3或者-3,以下分两种情况分别讨论:
第一种情况:如果有一个等于3的话,另外4个数的乘积为1,它们的取值情况为:
(1)4个数都是1,a,b,c,d中至少有三个相等的,与已知条件矛盾;
(2)两个1,两个-1,a,b,c,d中至少有两个相等的,也与已知条件矛盾.
第二种情况:如果有一个等于-3,另外4个数的乘积为-1,它们的取值情况为:
(1)1个是-1,另外三个是1;
(2)1个是1,另外三个是-1.
也不难分析这种情况也导致a,b,c,d中至少有两个相等的,也就是导致矛盾.
综上可知不存在整数k,使得f(k)=8.
注:可以看出来本题中的8可以改成别的数,只要和5的差是质数即可.
看了 已知f(x)是整系数多项式,...的网友还看了以下:
f(x+y)=f(x)f(y),求f'(x)与f(x)的关系?设f在正无穷到负无穷有定义,且对所有 2020-05-13 …
已知函数f(x)=e^x+ax-1(a∈R,且a为常数)...已知函数f(x)=e^x+ax-1( 2020-05-13 …
函数的解析式及定义域1)已知f(x+1/x)=x³+1/x³,求f(x)2)已知f(2/x+1)= 2020-07-18 …
用判别式法求系数问题已知函数f(x)=(2x²+ax+b)/(x²+1)的值域为[1,3],求a, 2020-08-01 …
高数求导已知:f(x)=e^(x^2)求①f'(x)②f'(x^2)已知:f(x)=e^sinx, 2020-08-02 …
求个运动学问题,如果已知S=f(v)求S与t关系时如果用两边同时求导则得到v=f'(v)解出v为一 2020-08-02 …
高一的函数定义域的求法.已知f(x),求f[g(x)],例如已知f(x)的定义域为(1,2),求f( 2020-11-10 …
绕弯的题,我被绕晕了,求函数有七组数据,ABCDEFG,已知A,B,C,七组数据的关系D+E=B,F 2020-11-11 …
已知函数f(x)=x|x-左|(x∈R),且f(f)=0.(f)求左的值,并用分段函数的形式来表示f 2021-01-15 …
已知摄氏温度C与华氏温度F的关系是F=C*9/5+32,写出由摄氏温度求华氏温度的算法并画出程序框图 2021-01-15 …