早教吧作业答案频道 -->数学-->
已知f(x)是整系数多项式,存在四个不同的整数a,b,c,d,使得f(a)=f(b)=f(c)=f(d)=5求证不存在整数k,使得f(k)=8
题目详情
已知f(x)是整系数多项式,存在四个不同的整数a,b,c,d,使得f(a)=f(b)=f(c)=f(d)=5
求证不存在整数k,使得f(k)=8
求证不存在整数k,使得f(k)=8
▼优质解答
答案和解析
根据题给条件f(x)-5=(x-a)(x-b)(x-c)(x-d)q(x),q(x)仍是整系数多项式.
如果存在整数k使得f(k)=8,那么
8-5=3=(k-a)(k-b)(k-c)(k-d)q(k),
此式右端是5个整数的乘积,值为3.
这5个整数必然有一个等于3或者-3,以下分两种情况分别讨论:
第一种情况:如果有一个等于3的话,另外4个数的乘积为1,它们的取值情况为:
(1)4个数都是1,a,b,c,d中至少有三个相等的,与已知条件矛盾;
(2)两个1,两个-1,a,b,c,d中至少有两个相等的,也与已知条件矛盾.
第二种情况:如果有一个等于-3,另外4个数的乘积为-1,它们的取值情况为:
(1)1个是-1,另外三个是1;
(2)1个是1,另外三个是-1.
也不难分析这种情况也导致a,b,c,d中至少有两个相等的,也就是导致矛盾.
综上可知不存在整数k,使得f(k)=8.
注:可以看出来本题中的8可以改成别的数,只要和5的差是质数即可.
如果存在整数k使得f(k)=8,那么
8-5=3=(k-a)(k-b)(k-c)(k-d)q(k),
此式右端是5个整数的乘积,值为3.
这5个整数必然有一个等于3或者-3,以下分两种情况分别讨论:
第一种情况:如果有一个等于3的话,另外4个数的乘积为1,它们的取值情况为:
(1)4个数都是1,a,b,c,d中至少有三个相等的,与已知条件矛盾;
(2)两个1,两个-1,a,b,c,d中至少有两个相等的,也与已知条件矛盾.
第二种情况:如果有一个等于-3,另外4个数的乘积为-1,它们的取值情况为:
(1)1个是-1,另外三个是1;
(2)1个是1,另外三个是-1.
也不难分析这种情况也导致a,b,c,d中至少有两个相等的,也就是导致矛盾.
综上可知不存在整数k,使得f(k)=8.
注:可以看出来本题中的8可以改成别的数,只要和5的差是质数即可.
看了 已知f(x)是整系数多项式,...的网友还看了以下:
已知f(x)=2x-2-x,a=(79)12,b=(97)12,c=log279,则f(a),f( 2020-05-13 …
虽能帮我看看lingo程序哪里错了model:sets:a/1..3/:d;b/1..3/;c(a 2020-05-13 …
mathematica解一元六次方程Solve[{b==f+a,c+d==b,f+g==d,40- 2020-05-16 …
设F(X),G(X)是数域K上的不可约多项式,存在C属于C,若X-C整除F(X),G(X),则G( 2020-06-03 …
设函数f∈C[a,b],f在(a,b)内二阶可导,且f(a)=f(b)=0,f(c)>0,a 2020-07-16 …
余数定理一个整系数四次多项式f(x),有四个不同的整数a,b,c,d,是f(a)=f(b)=f(c 2020-08-02 …
询问一道有关因式定理的题一个整系数四次多项式f(x)对于四个不同的整数a,b,c,d有f(a)=f 2020-08-02 …
关于子空间的两个问题为什么1.函数集合{f(x)∈C[a,b]|f(a)=1}不是线性空间C[a, 2020-08-03 …
该地质演化过程的正确排序是()A.d-e-g-f-b-a-h-cB.d-g-e-a-c-h-b-fC 2020-11-04 …
读舟曲县地形比降示意图,回答1~2题。1、图中地形比降最大的是[]A、A—B段B、B—E段C、B—F 2020-12-10 …