早教吧作业答案频道 -->数学-->
已知f(x)是整系数多项式,存在四个不同的整数a,b,c,d,使得f(a)=f(b)=f(c)=f(d)=5求证不存在整数k,使得f(k)=8
题目详情
已知f(x)是整系数多项式,存在四个不同的整数a,b,c,d,使得f(a)=f(b)=f(c)=f(d)=5
求证不存在整数k,使得f(k)=8
求证不存在整数k,使得f(k)=8
▼优质解答
答案和解析
根据题给条件f(x)-5=(x-a)(x-b)(x-c)(x-d)q(x),q(x)仍是整系数多项式.
如果存在整数k使得f(k)=8,那么
8-5=3=(k-a)(k-b)(k-c)(k-d)q(k),
此式右端是5个整数的乘积,值为3.
这5个整数必然有一个等于3或者-3,以下分两种情况分别讨论:
第一种情况:如果有一个等于3的话,另外4个数的乘积为1,它们的取值情况为:
(1)4个数都是1,a,b,c,d中至少有三个相等的,与已知条件矛盾;
(2)两个1,两个-1,a,b,c,d中至少有两个相等的,也与已知条件矛盾.
第二种情况:如果有一个等于-3,另外4个数的乘积为-1,它们的取值情况为:
(1)1个是-1,另外三个是1;
(2)1个是1,另外三个是-1.
也不难分析这种情况也导致a,b,c,d中至少有两个相等的,也就是导致矛盾.
综上可知不存在整数k,使得f(k)=8.
注:可以看出来本题中的8可以改成别的数,只要和5的差是质数即可.
如果存在整数k使得f(k)=8,那么
8-5=3=(k-a)(k-b)(k-c)(k-d)q(k),
此式右端是5个整数的乘积,值为3.
这5个整数必然有一个等于3或者-3,以下分两种情况分别讨论:
第一种情况:如果有一个等于3的话,另外4个数的乘积为1,它们的取值情况为:
(1)4个数都是1,a,b,c,d中至少有三个相等的,与已知条件矛盾;
(2)两个1,两个-1,a,b,c,d中至少有两个相等的,也与已知条件矛盾.
第二种情况:如果有一个等于-3,另外4个数的乘积为-1,它们的取值情况为:
(1)1个是-1,另外三个是1;
(2)1个是1,另外三个是-1.
也不难分析这种情况也导致a,b,c,d中至少有两个相等的,也就是导致矛盾.
综上可知不存在整数k,使得f(k)=8.
注:可以看出来本题中的8可以改成别的数,只要和5的差是质数即可.
看了 已知f(x)是整系数多项式,...的网友还看了以下:
f(x)+f(y)=2f[(x+y)/2]f[(x-y)/2],f(0)不等于,且存在非零常数c, 2020-05-14 …
已知函数f(x)=x^2-2x+5是否存在实数m,使不等式m+f(x)>0对于任意x属于R恒成立, 2020-05-15 …
已知函数f(x)=|x-5|-1(1)解不等式f(x)小于等于4(2)若存在x属于R,使不等式f( 2020-05-20 …
一个整系数三次多项式f(x),有三个不同的整数a1a2a3,使f(a1)=f(a2)=f(a3)= 2020-07-09 …
已知f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实根.现有四个命题①若a>0,则不等 2020-07-21 …
已知对于任意a,b属于R有f(a+b)+f(a-b)=2f(a)*f(b)且f(0)不等于0问若存 2020-07-27 …
介值定理里为什么要f(a)不等于f(b)?介值定理:设函数在闭区间[a,b]上连续,且f(a)不等 2020-08-01 …
英语翻译天国里一共住着7个美丽可爱的天使.有一天,其中一个天使不小心撞到了门楣上,晕了过去,坠落到凡 2020-11-02 …
语文仿写句子例:我应该是个八尺男儿,即使不能金戈铁马,醉卧沙场,也应该玉树临风,谈笑间樯橹灰飞烟灭. 2020-11-20 …
Z、F、F开头的英文短句要3句分别是ZFF开头的温暖温馨一点的可以无关爱情要短一点的呢.比方这样的Z 2020-11-26 …