早教吧作业答案频道 -->数学-->
已知函数f(x)=2e2x+2x+sin2x.(Ⅰ)试判断函数f(x)的单调性并说明理由;(Ⅱ)若对任意的x∈[0,1],不等式组f(2kx−x2)>f(k−4)f(x2−kx)>f(k−3)恒成立,求实数k的取值范围.
题目详情
已知函数f(x)=2e2x+2x+sin2x.
(Ⅰ)试判断函数f (x)的单调性并说明理由;
(Ⅱ)若对任意的x∈[0,1],不等式组
恒成立,求实数k的取值范围.
(Ⅰ)试判断函数f (x)的单调性并说明理由;
(Ⅱ)若对任意的x∈[0,1],不等式组
|
▼优质解答
答案和解析
(Ⅰ)函数f(x)在R上单调递增.利用导数证明如下:
因为f(x)=2e2x+2x+sin2x,
所以,f'(x)=4e2x+2+2cos2x>0在R上恒成立,
所以f(x)在R上递增.(5分)
(Ⅱ)由于f(x)在R上递增,不等式组可化为
,对于任意x∈[0,1]恒成立.
令F(x)=x2-2kx+k-4<0对任意x∈[0,1]恒成立,
必有
,即
,解之得-3<k<4,
再由x2-kx-k+3>0对任意x∈[0,1]恒成立可得k<
=
=(x+1)+
−2,
在x∈[0,1]恒成立,因此只需求
的最小值,而(x+1)+
-2≥2.
当且仅当x=1时取等号,故k<2.
综上可知,k的取值范围是(-3,2).(12分)
因为f(x)=2e2x+2x+sin2x,
所以,f'(x)=4e2x+2+2cos2x>0在R上恒成立,
所以f(x)在R上递增.(5分)
(Ⅱ)由于f(x)在R上递增,不等式组可化为
|
令F(x)=x2-2kx+k-4<0对任意x∈[0,1]恒成立,
必有
|
|
再由x2-kx-k+3>0对任意x∈[0,1]恒成立可得k<
x2+3 |
x+1 |
(x+1)2−2(x+1)+4 |
x+1 |
4 |
x+1 |
在x∈[0,1]恒成立,因此只需求
x2+3 |
x+1 |
4 |
x+1 |
当且仅当x=1时取等号,故k<2.
综上可知,k的取值范围是(-3,2).(12分)
看了 已知函数f(x)=2e2x+...的网友还看了以下:
我想问一下:f(-x)的意思为f(x)只不过把X都换成了-X,.那-f(x)是什么意思呢,知道意思 2020-05-14 …
函数与方程题~~~对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不 2020-06-03 …
我们在学静电场.就学到场强和电荷在这个电场中受到的力还有这个电荷量有这样的一个关系E=F/q.资料 2020-06-06 …
物理中的定义式我们老师说定义式的左右两边无关,就像E=F/Q不能说E与F成正比,与Q成反比,E只与 2020-06-14 …
设函数f(x)=a1sin(x+a1)+a2sin(x+a2)+.+ansin(x+an),其中a 2020-07-18 …
对于函数f(x),存在x∈R,使f(x)=x成立,则x称为f(X)的不动点已知函数f(x)=ax^ 2020-07-30 …
函数的奇偶性的加减或正负号比如如f(3)-f(1)是不是在奇函数或偶函数情况下可以直接减变成f(2 2020-08-01 …
求不定积分有人说dx可以不要,F'(x)=f(x),即f(x)的不定积分是F(x)+c,为什么加d 2020-08-03 …
根据牛顿第二定律的表达式F=ma,下列说法正确的是()A.m一定时,a与F成正比,对F、a的单位不限 2020-10-30 …
为什么机车达到最大速度时a=0,F=f根据P=FV,当P为恒定功率时V和F成反比,那么V不是可以无限 2020-11-24 …