早教吧作业答案频道 -->数学-->
关于微积分设f(x),g(x)在[a,b]上连续,在(a,b)内可微,证明存在t∈(a,b),使f`(t)[g(b)-g(t)]=g`(t)[f(t)-f(a)].答案中写道:所要证得的等式可写为[(f(x)-f(a))(g(b)-g(x))]`|(x=t)=0.为什么?
题目详情
关于微积分
设f(x),g(x)在[a,b]上连续,在(a,b)内可微,证明存在t∈(a,b),使f`(t)[g(b)-g(t)]=g`(t)[f(t)-f(a)].答案中写道:所要证得的等式可写为[(f(x)-f(a))(g(b)-g(x))]`|(x=t)=0.为什么?
设f(x),g(x)在[a,b]上连续,在(a,b)内可微,证明存在t∈(a,b),使f`(t)[g(b)-g(t)]=g`(t)[f(t)-f(a)].答案中写道:所要证得的等式可写为[(f(x)-f(a))(g(b)-g(x))]`|(x=t)=0.为什么?
▼优质解答
答案和解析
就是对[(f(x)-f(a))(g(b)-g(x))]求导,然后代入t
求导得f'(x)[g(b)-g(x)]-[f(x)-f(a)]g'(x)=0
代入x=t后恰好为所给的条件.
所以可以构造函数P(x)=[(f(x)-f(a))(g(b)-g(x))]
所以P(a)=P(b)=0由罗尔定理得证.
求导得f'(x)[g(b)-g(x)]-[f(x)-f(a)]g'(x)=0
代入x=t后恰好为所给的条件.
所以可以构造函数P(x)=[(f(x)-f(a))(g(b)-g(x))]
所以P(a)=P(b)=0由罗尔定理得证.
看了 关于微积分设f(x),g(x...的网友还看了以下:
基本不等式超费解130已知a>b>0,求a2+1/(a*b)+1/[a*(a-b)]的最小值.a2 2020-05-13 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
设f:A→B是集合A到B的映射,下列说法正确的是( )(A)A中不同元素在B中必有不同的元素与它对 2020-05-15 …
设在区间[0,1]上f''(x)>0,则f'(0)f'(1)和f(1)-f(0)的大小顺序是设在区 2020-06-08 …
问一道高一指数函数的题目(1)求证:f(x)=(a^x-a^-x)/2(a>0,且a≠1)是奇函数 2020-06-09 …
设f(x)为连续函数,f(0)=a,F(t)=∫∫∫Ω{z-f(x^2+y^2+z^2)]dv,其 2020-06-15 …
考研高数题,求函数f(x)设f(x)在R上定义,且f'(0)=a (a不等于0),又任取x,y属于 2020-06-27 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
儿子的两道习题及解答理解不了,不知道什么涵义,求详解1.若对于一切实数a,b均有f(ab)=f(a) 2020-11-21 …
递回关系式的运算公式(数列)以下是推导一个公式"a=a+r(1-p^n)/(1-p)"的过程a=p* 2021-01-13 …