早教吧作业答案频道 -->其他-->
已知函数f(x)=x2+(k-2)x+2k-1(1)若f(1)=16,函数g(x)是R上的奇函数,当x>0时,g(x)=f(x),(i)求实数k与g(0)的值;(ii)当x<0时,求g(x)的解析式;(2)若方程f(x)=0的两
题目详情
已知函数f(x)=x2+(k-2)x+2k-1
(1)若f(1)=16,函数g(x)是R上的奇函数,当x>0时,g(x)=f(x),
(i)求实数k与g(0)的值;
(ii)当x<0时,求g(x)的解析式;
(2)若方程f(x)=0的两根中,一根属于区间(0,1),另一根属于区间(1,2),求实数k的取值范围.
(1)若f(1)=16,函数g(x)是R上的奇函数,当x>0时,g(x)=f(x),
(i)求实数k与g(0)的值;
(ii)当x<0时,求g(x)的解析式;
(2)若方程f(x)=0的两根中,一根属于区间(0,1),另一根属于区间(1,2),求实数k的取值范围.
▼优质解答
答案和解析
(1)(i)∵f(1)=16,∴12+k-2+2k-1=16,化为3k=18,解得k=6.
∵函数g(x)是R上的奇函数,∴g(-0)=-g(0),解得g(0)=0.
(ii)由k=6可得f(x)=x2+4x+11.
设x<0,则-x>0.
∵当x>0时g(x)=f(x)=x2+4x+11.
∴g(-x)=x2-4x+11.
∴g(x)=-g(-x)=-x2+4x-11.
(2)∵方程f(x)=0的两根中,一根属于区间(0,1),另一根属于区间(1,2),
∴
,解得
<k<
.
∴实数k的取值范围是(
,
).
∵函数g(x)是R上的奇函数,∴g(-0)=-g(0),解得g(0)=0.
(ii)由k=6可得f(x)=x2+4x+11.
设x<0,则-x>0.
∵当x>0时g(x)=f(x)=x2+4x+11.
∴g(-x)=x2-4x+11.
∴g(x)=-g(-x)=-x2+4x-11.
(2)∵方程f(x)=0的两根中,一根属于区间(0,1),另一根属于区间(1,2),
∴
|
1 |
2 |
2 |
3 |
∴实数k的取值范围是(
1 |
2 |
2 |
3 |
看了 已知函数f(x)=x2+(k...的网友还看了以下:
已知函数定义域为R,若存在常数m>0,对任意x∈R,有|f(x)|≤m|x|则称其为F函数,则f( 2020-04-27 …
1.已知抛物线M:=4x,圆N:(x-1)+y=r(其中r为常数r>0),过点(1,0)的直线l交 2020-05-13 …
已知函数f(x)=x|x减2m|,常数m属于R(1)设m=0,求证:函数f(x)递增(2)设m>0 2020-05-13 …
已知函数f(x)=x|x减2m|,常数m属于R(1)设m=0,求证:函数f(x)递增(2)设m>0 2020-05-13 …
对于两个变量y和x进行线性相关检验,已知n是观察值组数,r是相关系数,且已知:①n=7,r=0,9 2020-07-09 …
已知函数f(x)=Asin^2(wx+r)(A>0,w>0,0<r<兀/2)且y=f(x)的最大值 2020-07-13 …
已知函数f(x)对任意实数x,y∈R,总有f(x)+f(y)=f(x+y)已知函数f(x)对任意实 2020-07-16 …
已知函数fx=ax^2+bx+c(a>0,b∈R,c∈R)已知函数f(x)=ax^2+bx+c(a 2020-07-26 …
已知函数f(x)满足f(x+y)+f(x-y)=2f(x)×f(y).(x∈R,y∈R.),且f( 2020-07-27 …
已知函数f(x)的定义域R,对任意实数m,n都有f(m+n)=f(m)×f(n),且当x>0时.0< 2020-12-08 …