早教吧作业答案频道 -->数学-->
已知f(x)=e^x,g(x)=lnx(1)求证g(x)<x<f(x)(2)设直线L与f(x),g(x)图像均相切,切点分别为(x1,f(x1)),(x2,g(x2)),且x1>x2>0,求证x1>1已知f(x)=-1/2ax2+x-ln(1+x),其中a>0(1)若x=3是函数f(x)的极值点,求a的值(2)求f(x)的
题目详情
已知f(x)=e^x,g(x)=lnx
(1)求证g(x)<x<f(x)
(2)设直线L与f(x),g(x)图像均相切,切点分别为(x1,f(x1)),(x2,g(x2)),且x1>x2>0,求证x1>1
已知f(x)=-1/2ax2+x-ln(1+x),其中a>0
(1)若x=3是函数f(x)的极值点,求a的值
(2)求f(x)的单调区间
(3)若f(x)在[0,+∞)上的最大值是0,求a的取值范围.
(1)求证g(x)<x<f(x)
(2)设直线L与f(x),g(x)图像均相切,切点分别为(x1,f(x1)),(x2,g(x2)),且x1>x2>0,求证x1>1
已知f(x)=-1/2ax2+x-ln(1+x),其中a>0
(1)若x=3是函数f(x)的极值点,求a的值
(2)求f(x)的单调区间
(3)若f(x)在[0,+∞)上的最大值是0,求a的取值范围.
▼优质解答
答案和解析
第一部分从图像看是很显然的结果,所以有很多办法.这里给一个.
设p(x)=x-g(x)=x-lnx,则p'(x)=1-1/x,p''(x)=1/x^2.当p'(x)=0时,x=1,p''(x)>0.所以此处有p(x)的最小值1-ln1=1>0.所以p(x)恒大于零,即x>lnx.同样可证另外一个不等式.或者两边同时取幂.
第二部分直线的斜率为(f(x1)-g(x2))/(x1-x2)=e^x1=1/x2.为了方便,下面用a=x1,b=lnx2.
则 (e^a-b)/(a-e^b)=e^a=e^-b,后面一半等式得到a=-b,代入前面一半消b,得到(e^a+a)/(a-e^-a)=e^a,整理,e^a=(a+1)/(a-1).因为e^a恒大于0,所以a-1>0,a>1,即x1>1.
设p(x)=x-g(x)=x-lnx,则p'(x)=1-1/x,p''(x)=1/x^2.当p'(x)=0时,x=1,p''(x)>0.所以此处有p(x)的最小值1-ln1=1>0.所以p(x)恒大于零,即x>lnx.同样可证另外一个不等式.或者两边同时取幂.
第二部分直线的斜率为(f(x1)-g(x2))/(x1-x2)=e^x1=1/x2.为了方便,下面用a=x1,b=lnx2.
则 (e^a-b)/(a-e^b)=e^a=e^-b,后面一半等式得到a=-b,代入前面一半消b,得到(e^a+a)/(a-e^-a)=e^a,整理,e^a=(a+1)/(a-1).因为e^a恒大于0,所以a-1>0,a>1,即x1>1.
看了已知f(x)=e^x,g(x)...的网友还看了以下:
已知定义域为(-1,1)的函数f(x)=xx2+1.(Ⅰ)判断函数f(x)奇偶性并加以证明;(Ⅱ) 2020-05-13 …
设a>0,f(x)=e^x/a+a/e^x是R上的偶函数,求a值.∵f(x)=e^x/a+a/e^ 2020-05-17 …
平面向量的集合A到A的映射f由f(x)=x-2(x·a)a确定面向量的集合A到A的映射f由f(向量 2020-05-17 …
求两函数极限区间的题目1.设f(x)在[0,2a]上连续且发f(0)=f(2a)证明:至少存在一点 2020-06-05 …
设函数f(x)在x=0处连续,下列命题错误的是()A.若limx→0f(x)x存在,则f(0)=0 2020-06-12 …
设函数f(x)在x=0处连续.下列结论不正确的是()A.若limx→0f(x)+f(-x)x存在, 2020-06-12 …
导数乘法证明中h是什么意思?(f(x)g(x))'=lim(h→0)[f(x+h)g(x+h)-f 2020-07-22 …
抽象函数f(a-x)+f(x+b)=2c,求对称中心.f(a-x)+f(x+b)=2cf(x+b) 2020-08-02 …
葛云飞(1)设函数f(x)=1-2x,g[f(x)]=(1-x)/x,则g(1/2)=(2)若f(x 2020-11-11 …
f(x)满足f(1+1/x)=x2+1/x,换元法与整体代换为什么会有不同结果已知f(1+1/x)= 2021-01-07 …