早教吧作业答案频道 -->数学-->
在直线上顺次取A,B,C三点,分别以AB,BC为边长在直线的同侧作正三角形,作得两个正三角形的另一顶点分别为D,E.(1)如图①,连结CD,AE,求证:CD=AE;(2)如图②,若AB=1,BC=2,求DE
题目详情
在直线上顺次取A,B,C三点,分别以AB,BC为边长在直线的同侧作正三角形,作得两个正三角形的另一顶点分别为D,E.

(1)如图①,连结CD,AE,求证:CD=AE;
(2)如图②,若AB=1,BC=2,求DE的长;
(3)如图③,将图②中的正三角形BEC绕B点作适当的旋转,连结AE,若有DE2+BE2=AE2,试求∠DEB的度数.

(1)如图①,连结CD,AE,求证:CD=AE;
(2)如图②,若AB=1,BC=2,求DE的长;
(3)如图③,将图②中的正三角形BEC绕B点作适当的旋转,连结AE,若有DE2+BE2=AE2,试求∠DEB的度数.
▼优质解答
答案和解析
(1)证明:如图①中,∵△ABD和△ECB都是等边三角形,
∴AD=AB=BD,BC=BE=EC,∠ABD=∠EBC=60°,
∴∠ABE=∠DBC,
在△ABE和△DBC中,
,
∴△ABE≌△DBC,
∴AE=DC.

(2) 如图②中,取BE中点F,连接DF.
∵BD=AB=1,BE=BC=2,∠ABD=∠EBC=60°,
∴BF=EF=1=BD,∠DBF=60°,
∴△DBF是等边三角形,
∴DF=BF=EF,∠DFB=60°,
∵∠BFD=∠FED+∠FDE,
∴∠FDE=∠FED=30°
∴∠EDB=180°-DEB∠DBE-∠DEB=90°,
∴DE=
=
=
.

(3) 如图③中,连接DC,
∵△ABD和△ECB都是等边三角形,
∴AD=AB=BD,BC=BE=EC,∠ABD=∠EBC=60°,
∴∠ABE=∠DBC,
在△ABE和△DBC中,
,
∴△ABE≌△DBC,
∴AE=DC.
∵DE2+BE2=AE2,BE=CE,
∴DE2+CE2=CD2,
∴∠DEC=90°,
∵∠BEC=60°,
∴∠DEB=∠DEC-∠BEC=30°.
∴AD=AB=BD,BC=BE=EC,∠ABD=∠EBC=60°,
∴∠ABE=∠DBC,
在△ABE和△DBC中,
|
∴△ABE≌△DBC,
∴AE=DC.

(2) 如图②中,取BE中点F,连接DF.
∵BD=AB=1,BE=BC=2,∠ABD=∠EBC=60°,
∴BF=EF=1=BD,∠DBF=60°,
∴△DBF是等边三角形,
∴DF=BF=EF,∠DFB=60°,
∵∠BFD=∠FED+∠FDE,
∴∠FDE=∠FED=30°
∴∠EDB=180°-DEB∠DBE-∠DEB=90°,
∴DE=
BE2-BD2 |
22-12 |
3 |

(3) 如图③中,连接DC,
∵△ABD和△ECB都是等边三角形,
∴AD=AB=BD,BC=BE=EC,∠ABD=∠EBC=60°,
∴∠ABE=∠DBC,
在△ABE和△DBC中,
|
∴△ABE≌△DBC,
∴AE=DC.
∵DE2+BE2=AE2,BE=CE,
∴DE2+CE2=CD2,
∴∠DEC=90°,
∵∠BEC=60°,
∴∠DEB=∠DEC-∠BEC=30°.

看了 在直线上顺次取A,B,C三点...的网友还看了以下:
在三角形ABC中,角BAC=90度,AB=AC,AE是过点A的一条直线,BD垂直AE于D,CF垂直 2020-04-07 …
如图所示,已知△ABC和△CDE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,A 2020-05-13 …
已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若A 2020-05-16 …
在矩形ABCD中,AB=4,AD=10.直角尺的直角顶点P在AD上滑动是,(点P与A\D0不重合) 2020-05-17 …
已知:△ABC.(1)如果AB=AC,D、E是AB、AC上的点,若AD=AE,请你写出此图中的另一 2020-06-03 …
正方形ABCD中,点E在边AB上(点E与A、B不重合)过点E作FG⊥DE,FG与BC交于F,与边D 2020-06-12 …
(2010•重庆)已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线 2020-07-29 …
如图,AD是△ABC的中线,点E在AC上,BE、AD相交于点F.数学兴趣小组同学在研究这一图形时得到 2020-11-01 …
如图,点D,E在△ABC的边BC上,连接AD,AE.①AB=AC;②AD=AE;③BD=CE.以此三 2020-11-01 …
如图,AB是⊙O的直径,CD是弦,AE⊥CD于E,BF⊥CD于F,BF交⊙O于G,下面的结论:(1) 2020-11-02 …