早教吧作业答案频道 -->其他-->
已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=5.下列结论:①△APD≌△AEB;②点B到直线AE的距离为2;③EB⊥ED;④S△APD+S△APB=1+6;⑤S正
题目详情
已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=5.下
列结论:①△APD≌△AEB;②点B到直线AE的距离为2;③EB⊥ED;④S△APD+S△APB=1+6;⑤S正方形ABCD=4+6.其中正确结论的序号是 ( ) 谢谢!
列结论:①△APD≌△AEB;②点B到直线AE的距离为2;③EB⊥ED;④S△APD+S△APB=1+6;⑤S正方形ABCD=4+6.其中正确结论的序号是 ( ) 谢谢!
▼优质解答
答案和解析
由边角边定理易知△APD≌△AEB,故①正确;
由△APD≌△AEB得,∠AEP=∠APE=45°,从而∠APD=∠AEB=135°,
所以∠BEP=90°,
过B作BF⊥AE,交AE的延长线于F,则BF的长是点B到直线AE的距离,
在△AEP中,由勾股定理得PE= 2 ,
在△BEP中,PB= 5 ,PE= 2 ,由勾股定理得:BE= 3 ,
∵∠PAE=∠PEB=∠EFB=90°,AE=AP,
∴∠AEP=45°,
∴∠BEF=180°-45°-90°=45°,
∴∠EBF=45°,
∴EF=BF,
在△EFB中,由勾股定理得:EF=BF= 6 2 ,
故②是错误的;
因为△APD≌△AEB,所以∠ADP=∠ABE,而对顶角相等,所以③是正确的;
由△APD≌△AEB,
∴PD=BE= 3 ,
可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=1 2 + 6 2 ,因此④是错误的;
连接BD,则S△BPD=1 2 PD×BE=3 2 ,
所以S△ABD=S△APD+S△APB+S△BPD=2+ 6 2 ,
所以S正方形ABCD=2S△ABD=4+ 6 .
综上可知,正确的有①③⑤.
由△APD≌△AEB得,∠AEP=∠APE=45°,从而∠APD=∠AEB=135°,
所以∠BEP=90°,
过B作BF⊥AE,交AE的延长线于F,则BF的长是点B到直线AE的距离,
在△AEP中,由勾股定理得PE= 2 ,
在△BEP中,PB= 5 ,PE= 2 ,由勾股定理得:BE= 3 ,
∵∠PAE=∠PEB=∠EFB=90°,AE=AP,
∴∠AEP=45°,
∴∠BEF=180°-45°-90°=45°,
∴∠EBF=45°,
∴EF=BF,
在△EFB中,由勾股定理得:EF=BF= 6 2 ,
故②是错误的;
因为△APD≌△AEB,所以∠ADP=∠ABE,而对顶角相等,所以③是正确的;
由△APD≌△AEB,
∴PD=BE= 3 ,
可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=1 2 + 6 2 ,因此④是错误的;
连接BD,则S△BPD=1 2 PD×BE=3 2 ,
所以S△ABD=S△APD+S△APB+S△BPD=2+ 6 2 ,
所以S正方形ABCD=2S△ABD=4+ 6 .
综上可知,正确的有①③⑤.
看了 已知:如图,在正方形ABCD...的网友还看了以下:
双曲线1,已知双曲线x^2-y^2/2=1的焦点为F1、F2,点M在曲线上且MF1*MF2=0求点 2020-04-26 …
关于高中抛物线1.已知抛物线的顶点是双曲线16x^2-9y^2=144的中心而焦点是双曲线的左顶点 2020-05-14 …
数学问题:已知一椭圆以抛物线x^2=2p(y+(p/2))的准线为下准线1,已知一椭圆以抛物线x^ 2020-05-19 …
如图,在△ABC中,AE是边BC上的中线 (1)已知AB=4,AE=3,BC=5,求△ABE的周长 2020-06-27 …
..1.已知直线l过点A(1,2),B(-1,-5),求经过点P(3,2)且平行于直线l的直线的一 2020-07-24 …
1.已知曲线y=1/x(1)求曲线在点P(1,1)处的切线方程(2)求曲线过点Q(1,0)的切线方 2020-07-31 …
弹性模量(切线1%)是什么意思使用Instron测的的数据,有一项是弹性模量(切线1%),不知道和 2020-07-31 …
1.已知一条抛物线过点(3,-2)和(0,1).且它的对称抽为直线X=3,求这条抛物线的解析式?2. 2020-11-07 …
问两道分段函数基础题,数学底子差啊……(20)在线1,已知f(x)=大括号x^2,X>0,e,X=0 2020-12-08 …
已知圆(x-1)+(y-2)=25直线2ax-y+2a-1=0(1)证无论a取何值时直线l与圆相交( 2020-12-25 …