早教吧作业答案频道 -->数学-->
已知动圆P过点F(0,14)且与直线y=−14相切.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)过点F作一条直线交轨迹C于A,B两点,轨迹C在A,B两点处的切线相交于点N,M为线段AB的中点,求证:MN⊥x轴.
题目详情
已知动圆P过点F(0,
)且与直线y=−
相切.

(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)过点F作一条直线交轨迹C于A,B两点,轨迹C在A,B两点处的切线相交于点N,M为线段AB的中点,求证:MN⊥x轴.
1 |
4 |
1 |
4 |

(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)过点F作一条直线交轨迹C于A,B两点,轨迹C在A,B两点处的切线相交于点N,M为线段AB的中点,求证:MN⊥x轴.
▼优质解答
答案和解析
(Ⅰ)根据抛物线的定义,
可得动圆圆心P的轨迹C的方程为x2=y(4分)
(Ⅱ)证明:设A(x1,x12),B(x2,x22),∵y=x2,
∴y′=2x,∴AN,BN的斜率分别
为2x1,2x2,故AN的方程为y-x12=2x1(x-x1),
BN的方程为y-x22=2x2(x-x2)(7分)
即
,两式相减,得x=
,
∴M,N的横坐标相等,于是MN⊥x轴(10分)
可得动圆圆心P的轨迹C的方程为x2=y(4分)
(Ⅱ)证明:设A(x1,x12),B(x2,x22),∵y=x2,
∴y′=2x,∴AN,BN的斜率分别
为2x1,2x2,故AN的方程为y-x12=2x1(x-x1),
BN的方程为y-x22=2x2(x-x2)(7分)
即
|
x1+x2 |
2 |
∴M,N的横坐标相等,于是MN⊥x轴(10分)
看了 已知动圆P过点F(0,14)...的网友还看了以下:
1.a≠0,b≠0,则a/|a|+b/|b|的不同取值的个数为()A.3B.2C.1D.02.若|x 2020-03-31 …
已知圆M:x2+(y-2)2=1,设B,C是直线l:x-2y=0上的两点,它们的横坐标分别为t,t 2020-04-12 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
已知集合A={y|y^2-(a^2+a+1)y+a(a^2+1)>0},B={y|}y=(1/2x 2020-06-03 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
如图,平面指教坐标系中,已知A(8,0),B(0,6),AB=10,点M(a,a)是线段AB上的一 2020-07-24 …
一个数学题过X轴上的动点A(a,0),向抛物线y=x^2+1引两切线,AP,AQ,P,Q为切点,1 2020-07-30 …
1.已知关于x的二次三项式x的平方+mx+n有一个因式(x+5),且m+n=17,求m,n的值.2 2020-07-31 …
第一题:设集合M={2,-2a,a²-3},N={a²+a-4,2a+1,-1},且2∈M∩N,求实 2020-11-03 …
递回关系式的运算公式(数列)以下是推导一个公式"a=a+r(1-p^n)/(1-p)"的过程a=p* 2021-01-13 …