早教吧作业答案频道 -->数学-->
关于的方程(x^2-1)^2-|x^2-1|+k=0,给出下列四个命题:(1)存在实数k,使得方程恰有2个不同的实数根;(2)存在实数k,使得方程恰有4个不同的实数根;(3)存在实数k,使得方程恰有5个不同的实数根;(4)存在
题目详情
关于的方程(x^2-1)^2-|x^2-1|+k=0,给出下列四个命题:
(1)存在实数k,使得方程恰有2个不同的实数根;
(2)存在实数k,使得方程恰有4个不同的实数根;
(3)存在实数k,使得方程恰有5个不同的实数根;
(4)存在实数k,使得方程恰有8个不同的实数根
全都是真命题
怎么求?
设t=|x^2-1|
所以y=t^2-t=-k>=0
然后把这个的图画出来
t=|x^2-1|的图画出来
就用这种画图法吧,然后怎么分类讨论,我只能分出一点点.
(1)存在实数k,使得方程恰有2个不同的实数根;
(2)存在实数k,使得方程恰有4个不同的实数根;
(3)存在实数k,使得方程恰有5个不同的实数根;
(4)存在实数k,使得方程恰有8个不同的实数根
全都是真命题
怎么求?
设t=|x^2-1|
所以y=t^2-t=-k>=0
然后把这个的图画出来
t=|x^2-1|的图画出来
就用这种画图法吧,然后怎么分类讨论,我只能分出一点点.
▼优质解答
答案和解析
设|x^2-1|=t,
则(x^2-1)^2=|x^2-1|^2=t^2
t^2-t+k=0,
t1*t2=k,t1+t2=1/2
此方程有两个小于1/2的正根t1,t2,
则|x^2-1|=t1或t2,x^2=1±t1,x^2=1±t2,
这样共有8个根
如果一根为0,则k=0,t^2-t=0,
t=1或0,
t=1,x^2=1±1=0或2,
t=0,x^2=1,共有3+2=5个根
t1,t2一正一负,因为|x^2-1|≥0,不可能是负数,
所以|x^2-1|=t1,x^2=1±t1,共有4个根,
如果t1>1,则x^2=1+t1,此时有2个根
所以都是真命题
则(x^2-1)^2=|x^2-1|^2=t^2
t^2-t+k=0,
t1*t2=k,t1+t2=1/2
此方程有两个小于1/2的正根t1,t2,
则|x^2-1|=t1或t2,x^2=1±t1,x^2=1±t2,
这样共有8个根
如果一根为0,则k=0,t^2-t=0,
t=1或0,
t=1,x^2=1±1=0或2,
t=0,x^2=1,共有3+2=5个根
t1,t2一正一负,因为|x^2-1|≥0,不可能是负数,
所以|x^2-1|=t1,x^2=1±t1,共有4个根,
如果t1>1,则x^2=1+t1,此时有2个根
所以都是真命题
看了 关于的方程(x^2-1)^2...的网友还看了以下:
如果存在实数x,使cosα=x2+12x成立,那么实数x的取值范围是()A.{-1,1}B.{x| 2020-06-03 …
设函数f(x)的定义域为D,若函数f(x)满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的 2020-07-13 …
对于任意实数x、y、z,定义运算“※”,满足x※y=6x2+4xy+y2−249(x+1)2+(y 2020-07-17 …
在区间0,8上随机取一实数x,则该实数x满足不等式1小于等于以2为底x的对数小于等于2的概率在区间 2020-08-01 …
若函数f(x),g(x)的定义域都是R,则f(x)>g(x)(x∈R)的充要条件是?A.存在一个属 2020-08-02 …
对于函数f(x)若存在x属于R使f(x)=x则称x是一个不动点fx=ax2+(b+1)x+(b-1) 2020-10-30 …
1已知函数f(x)=-x^2+2ex+m-1,g(x)=x+(e^2)/x(x>0)(1)若g(x) 2020-10-31 …
(2014•石景山区一模)若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别 2020-12-08 …
若对于定义在R上的连续函数f(x),存在常数a(a∈R),使得f(x+a)+af(x)=0对任意的实 2021-01-17 …
若对于定义在R上的连续函数f(x),存在常数a(a∈R),使得f(x+a)+af(x)=0对任意的实 2021-01-17 …