早教吧作业答案频道 -->数学-->
1已知函数f(x)=-x^2+2ex+m-1,g(x)=x+(e^2)/x(x>0)(1)若g(x)=m有零点,求m的取值范围;(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.2设函数f(x)=x^3-(9/2)x^2+6x-a.(1)对于任意实数x,f`(x)≥m恒成立,求m
题目详情
1已知函数f(x)=-x^2+2ex+m-1,g(x)=x+(e^2)/x (x>0)
(1)若g(x)=m有零点,求m的取值范围;
(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.
2设函数f(x)=x^3-(9/2)x^2+6x-a.
(1)对于任意实数x,f`(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且仅有一个实根,求a的取值范围.
(1)若g(x)=m有零点,求m的取值范围;
(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.
2设函数f(x)=x^3-(9/2)x^2+6x-a.
(1)对于任意实数x,f`(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且仅有一个实根,求a的取值范围.
▼优质解答
答案和解析
1:(1)因为g(x)=x+e^2/x>=2e,取等号时,有x=e.
所以若g(x)=m有零点,所以必有m>=2e.
(2)我们注意到函数f(x)=-x^2+2ex+m-1
=-(x-e)^2+e^2+m-1
在x=e取得最大值e^2+m-1.
而函数g(x)=x+e^2/x(x>0)在x=e处取得最小值.
所以要使g(x)-f(x)=0两个相异的实根,则函数f(x)的最高应高于g(x)的最低点.
于是我们就可以得到e^2+m-1>2e,于是有m>2e+1-e^2
综上所述有m>=2e.
2:1)f'(x)=3x^2-9x+6=3(x^2-3x+9/4)-3/4=3(x-3/2)^2-3/4
大于等于-3/4,所以m小于等于-3/4,所以m最大为-3/4
2)f'(x)=0,得x=1,2;当x小于等于1时,f(x)单调增加的;
当1 当x大于等于2时,f(x)单调增加.所以当x=2时,f(x)为最小,所以f(2)=8-18+12-a》0,所以a>2.
所以若g(x)=m有零点,所以必有m>=2e.
(2)我们注意到函数f(x)=-x^2+2ex+m-1
=-(x-e)^2+e^2+m-1
在x=e取得最大值e^2+m-1.
而函数g(x)=x+e^2/x(x>0)在x=e处取得最小值.
所以要使g(x)-f(x)=0两个相异的实根,则函数f(x)的最高应高于g(x)的最低点.
于是我们就可以得到e^2+m-1>2e,于是有m>2e+1-e^2
综上所述有m>=2e.
2:1)f'(x)=3x^2-9x+6=3(x^2-3x+9/4)-3/4=3(x-3/2)^2-3/4
大于等于-3/4,所以m小于等于-3/4,所以m最大为-3/4
2)f'(x)=0,得x=1,2;当x小于等于1时,f(x)单调增加的;
当1
看了1已知函数f(x)=-x^2+...的网友还看了以下:
f(x)=e^x-kx,设函数F(x)=f(x)+f(-x),求证F(1)F(2)……F(n)>[ 2020-05-21 …
已知函数f(x)=mxlnx(m>0),f(x)在点(e,f(e))处的切线与x轴、y轴分别交于A 2020-06-12 …
已知函数f(x)可导,且对任何实数x,y满足:f(x+y)=e^xf(y)+e^yf(x)和f'( 2020-07-16 …
已知函数f(x)=e^x+a/e^x(a为实数)问:(1)若函数y=|f(x)|在[0,1]上单调 2020-07-20 …
实变函数设f是点集E上的可测函数且存在两个函数g,h满足g∈L(E)h∈L(E)及g(x)≤f(x 2020-07-30 …
设x∈R,若函数f(x)为单调递增函数,且对任意实数x,都有f[f(x)-e^x]=e+1(e是自 2020-08-01 …
高一数学问题1.对于函数f(x)=a-2/(除以的意思)2的x次方减2(a属于R)(1)探索函数f 2020-08-01 …
f(x)=e^x/(1+ax^2),a为正实数f(x)为R上的单调函数,求a的取值范围.我看了f( 2020-08-02 …
为什么不是f(a)>f(0)/e^af(x)位定义在R上的可导函数,且f'(x)>f(x),对任为什 2020-11-03 …
已知a∈R,函数f(x)=e^x+a|x-2|.(1)当0<a≤e时,若函数f(x)在区间[1,+∞ 2020-12-03 …