早教吧作业答案频道 -->数学-->
1已知函数f(x)=-x^2+2ex+m-1,g(x)=x+(e^2)/x(x>0)(1)若g(x)=m有零点,求m的取值范围;(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.2设函数f(x)=x^3-(9/2)x^2+6x-a.(1)对于任意实数x,f`(x)≥m恒成立,求m
题目详情
1已知函数f(x)=-x^2+2ex+m-1,g(x)=x+(e^2)/x (x>0)
(1)若g(x)=m有零点,求m的取值范围;
(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.
2设函数f(x)=x^3-(9/2)x^2+6x-a.
(1)对于任意实数x,f`(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且仅有一个实根,求a的取值范围.
(1)若g(x)=m有零点,求m的取值范围;
(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.
2设函数f(x)=x^3-(9/2)x^2+6x-a.
(1)对于任意实数x,f`(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且仅有一个实根,求a的取值范围.
▼优质解答
答案和解析
1:(1)因为g(x)=x+e^2/x>=2e,取等号时,有x=e.
所以若g(x)=m有零点,所以必有m>=2e.
(2)我们注意到函数f(x)=-x^2+2ex+m-1
=-(x-e)^2+e^2+m-1
在x=e取得最大值e^2+m-1.
而函数g(x)=x+e^2/x(x>0)在x=e处取得最小值.
所以要使g(x)-f(x)=0两个相异的实根,则函数f(x)的最高应高于g(x)的最低点.
于是我们就可以得到e^2+m-1>2e,于是有m>2e+1-e^2
综上所述有m>=2e.
2:1)f'(x)=3x^2-9x+6=3(x^2-3x+9/4)-3/4=3(x-3/2)^2-3/4
大于等于-3/4,所以m小于等于-3/4,所以m最大为-3/4
2)f'(x)=0,得x=1,2;当x小于等于1时,f(x)单调增加的;
当1 当x大于等于2时,f(x)单调增加.所以当x=2时,f(x)为最小,所以f(2)=8-18+12-a》0,所以a>2.
所以若g(x)=m有零点,所以必有m>=2e.
(2)我们注意到函数f(x)=-x^2+2ex+m-1
=-(x-e)^2+e^2+m-1
在x=e取得最大值e^2+m-1.
而函数g(x)=x+e^2/x(x>0)在x=e处取得最小值.
所以要使g(x)-f(x)=0两个相异的实根,则函数f(x)的最高应高于g(x)的最低点.
于是我们就可以得到e^2+m-1>2e,于是有m>2e+1-e^2
综上所述有m>=2e.
2:1)f'(x)=3x^2-9x+6=3(x^2-3x+9/4)-3/4=3(x-3/2)^2-3/4
大于等于-3/4,所以m小于等于-3/4,所以m最大为-3/4
2)f'(x)=0,得x=1,2;当x小于等于1时,f(x)单调增加的;
当1
看了1已知函数f(x)=-x^2+...的网友还看了以下:
请教n的平方或三次方如何用键盘打出来?关于这类特殊的字和符号还有根号`函数`还有一系列古汉字以及各 2020-04-05 …
注意!是初二水平····若一次函数和反比例函数的图像交于点(-3,m)①求m和k的值.②根据函数图 2020-05-09 …
关于导数的1.若函数f(x)=3ax-2a+1在区间[-1,1]上无实根,则函数g(x)=(a-1 2020-05-20 …
一道函数的题方程的根与函数的零点若函数y=x²+(m-2)x+(5-m)有2个大于2的零点,则m的 2020-06-06 …
已知二次函数f(x)的二次项系数为a,且函数y=f(x)+2x的图象开口向下与x轴的两个交点的横坐 2020-06-06 …
整自变量的取值范围是分式函数的自变量的取值范围是二次根式函数的自变量的取值范围是 2020-07-25 …
关于对数函数定义域的理解问题函数y=log(2X-1)这个是下角标(3X-2)的定义域是这个是一个 2020-08-02 …
已知函数f(x)=x²-(a+2)x+a+1函数g(x)=11/8x-a^2/4-3/2,称方程f( 2020-12-31 …
已知函数(1)求的极大值和极小值,并画出函数的草图(2)根据函数图象讨论方程的根的个数问题:①有且仅 2021-01-05 …
已知函数f(x)=xx2+1.(1)求f(x)的极大值和极小值,并画出函数f(x)的草图(2)根据函 2021-01-15 …