早教吧作业答案频道 -->数学-->
偏导数的证明r=(x^2+y^2+z^2)1\2证明:r(xx)+r(yy)+r(zz)=2\r
题目详情
偏导数的证明
r=(x^2+y^2+z^2)1\2
证明:r(xx)+r(yy)+r(zz)=2\r
r=(x^2+y^2+z^2)1\2
证明:r(xx)+r(yy)+r(zz)=2\r
▼优质解答
答案和解析
对x的一阶导数
r(x)=(1/2)*(x^2+y^2+z^2)^(-1/2)*2x
=x*(x^2+y^2+z^2)^(-1/2)
对y的一阶导数
r(y)=y*(x^2+y^2+z^2)^(-1/2)
对z的一阶导数
r(z)=z*(x^2+y^2+z^2)^(-1/2)
二阶偏导函数
r(xx)=(x^2+y^2+z^2)^(-1/2)-(1/2)x*(x^2+y^2+z^2)^(-3/2)*2x
=(x^2+y^2+z^2)^(-1/2)-x^2*(x^2+y^2+z^2)^(-3/2)
r(yy)=(x^2+y^2+z^2)^(-1/2)-y^2*(x^2+y^2+z^2)^(-3/2)
r(zz)=(x^2+y^2+z^2)^(-1/2)-z^2*(x^2+y^2+z^2)^(-3/2)
r(xx)+r(yy)+r(zz)=(x^2+y^2+z^2)^(-1/2)-x^2*(x^2+y^2+z^2)^(-3/2) +(x^2+y^2+z^2)^(-1/2)-y^2*(x^2+y^2+z^2)^(-3/2) +(x^2+y^2+z^2)^(-1/2)-z^2*(x^2+y^2+z^2)^(-3/2)
=3(x^2+y^2+z^2)(-1/2)-(x^2+y^2+z^2)(x^2+y^2+z^2)^(-1/2)*(x^2+y^2+z^2)^(-1)
=3(x^2+y^2+z^2)(-1/2)-(x^2+y^2+z^2)^(-1/2)
=2(x^2+y^2+z^2)^(-1/2)
=2/r
r(x)=(1/2)*(x^2+y^2+z^2)^(-1/2)*2x
=x*(x^2+y^2+z^2)^(-1/2)
对y的一阶导数
r(y)=y*(x^2+y^2+z^2)^(-1/2)
对z的一阶导数
r(z)=z*(x^2+y^2+z^2)^(-1/2)
二阶偏导函数
r(xx)=(x^2+y^2+z^2)^(-1/2)-(1/2)x*(x^2+y^2+z^2)^(-3/2)*2x
=(x^2+y^2+z^2)^(-1/2)-x^2*(x^2+y^2+z^2)^(-3/2)
r(yy)=(x^2+y^2+z^2)^(-1/2)-y^2*(x^2+y^2+z^2)^(-3/2)
r(zz)=(x^2+y^2+z^2)^(-1/2)-z^2*(x^2+y^2+z^2)^(-3/2)
r(xx)+r(yy)+r(zz)=(x^2+y^2+z^2)^(-1/2)-x^2*(x^2+y^2+z^2)^(-3/2) +(x^2+y^2+z^2)^(-1/2)-y^2*(x^2+y^2+z^2)^(-3/2) +(x^2+y^2+z^2)^(-1/2)-z^2*(x^2+y^2+z^2)^(-3/2)
=3(x^2+y^2+z^2)(-1/2)-(x^2+y^2+z^2)(x^2+y^2+z^2)^(-1/2)*(x^2+y^2+z^2)^(-1)
=3(x^2+y^2+z^2)(-1/2)-(x^2+y^2+z^2)^(-1/2)
=2(x^2+y^2+z^2)^(-1/2)
=2/r
看了 偏导数的证明r=(x^2+y...的网友还看了以下:
最好可以说的明白点.小明买了只鸡花了8快钱,9快钱把它卖了.想想不划算,11快钱在买回来,在12快 2020-05-13 …
50米蛙泳比赛,四名同学的成绩分别是:李明2.2分钟、王鹏2.5分钟、张明1.75分钟、高洁2分钟 2020-05-13 …
计算积分∫x*(x^2+1)^(!/2)dx=(1/2)∫(x^2+1)^(1/2)d(x^2+1 2020-05-13 …
初二数学题我们来证明“2=3”.这是西班牙流行的一个“诡辩”,人们用下述方法“证明”这一结论.因为 2020-05-16 …
已知关于X的一元二次方程x^2+2(k-1)x+k^2-1=0有两个不相等的实数根已知关于x的一元 2020-05-16 …
两数和的平方求值(1)已知a+b=6,a-b=2,求a^2+b^2的值(2)已知a(a-1)-(a 2020-06-14 …
小亮和小明一共带5元钱去超市,他们看好了《童话大王》.可是一翻兜,小亮差1角,小明差2.5元.这本 2020-06-17 …
1.证明(cosA)^2+(cosB)^2+(cosC)^2-1=-2cosAcosBcosC(A 2020-07-09 …
1.设abcd是四个整数,且使m=(ab+cd)^2-1/4(a^2+b^2-c^2-d^2)^2 2020-07-09 …
令a、b、c是互不相等的正数如何证明aˆ2+1/aˆ2≥a+1/a成立令a、b、c是互不相等的正数 2020-07-09 …