早教吧作业答案频道 -->数学-->
设以多项式P(x)满足方程xP''(x)+(1-x)P'(x)+3P(x)=0且P(0)=1,求此多项式
题目详情
设以多项式P(x)满足方程xP''(x)+(1-x)P'(x)+3 P(x)=0且P(0)=1,求此多项式
▼优质解答
答案和解析
设P为n阶多项式,则最高阶项可以设为k*x^n.
影响等式左边最高阶的项是 -x*(DP/Dx) 和 3P,其他项,也就是x*(D2P/Dx2)和1*(DP/Dx),二者不影响最高阶.
等式左边最高阶是 -x * kn * x^(n-1) + 3 * k * x^n
= -kn * x^n + 3k * x^n
等式对于任意x成立,则要求任意阶系数为0,最高阶当然系数也是0,也就是-kn + 3k = 0,所以n=3
因此,P是3阶多项式,设P为ax^3 + bx^2 + cx + d
x * (6ax + 2b) + (1 - x) * (3ax^2 + 2bx + c) + 3 * (ax^3 + bx^2 + cx +d) = 0
=> (6a + 3a - 2b + b)x^2 + (2b + 2b - c + 3c)x + (c + 3d) = 0
上式对任意x成立,所以:
9a - 3b = 0
4b + 2c = 0
c + 3d = 0
因为P(0)=1,所以d=1,所以c=-3,b=1.5,a=4.5
因此P为4.5x^3 - 3x^2 + 1.5x + 1
影响等式左边最高阶的项是 -x*(DP/Dx) 和 3P,其他项,也就是x*(D2P/Dx2)和1*(DP/Dx),二者不影响最高阶.
等式左边最高阶是 -x * kn * x^(n-1) + 3 * k * x^n
= -kn * x^n + 3k * x^n
等式对于任意x成立,则要求任意阶系数为0,最高阶当然系数也是0,也就是-kn + 3k = 0,所以n=3
因此,P是3阶多项式,设P为ax^3 + bx^2 + cx + d
x * (6ax + 2b) + (1 - x) * (3ax^2 + 2bx + c) + 3 * (ax^3 + bx^2 + cx +d) = 0
=> (6a + 3a - 2b + b)x^2 + (2b + 2b - c + 3c)x + (c + 3d) = 0
上式对任意x成立,所以:
9a - 3b = 0
4b + 2c = 0
c + 3d = 0
因为P(0)=1,所以d=1,所以c=-3,b=1.5,a=4.5
因此P为4.5x^3 - 3x^2 + 1.5x + 1
看了 设以多项式P(x)满足方程x...的网友还看了以下:
设定义在R上的函数f(x)是最小正周期2π的偶函数,f'(x)是f(x)的导函数,当X∈[0,π] 2020-04-12 …
函数的零点问题设定义在R上的函数f(x)是最小正周期为2π的偶函数,f'(x)是f(x)的导函数, 2020-04-12 …
(1)利用基本不等式证明不等式:已知a>3,求证a+4a?3≥7;(2)已知x>0,y>0,且x+ 2020-05-13 …
设f(x)是定义域在R上的函数,且对于任意x,y∈R,恒有f(x+y)=f(x)f(y),且x>0 2020-05-23 …
数学题!1.已知x,y,z均不为0,并且x∧2+4y∧2+9z∧2=x∧3+2y∧3+3z∧3=x 2020-06-11 …
已知-a的2次方b的2n次方和3a的m-3次方b的4次方是同类项,且(x-p+m)的2次方+│y+ 2020-08-01 …
若x>0,y>0,且x+y=s,xy=p,则下列命题中正确的是()A.当且仅当x=y时s有最小值2p 2020-11-01 …
设X~U(0,1),U(0,1),且X与Y相互独立,求关于z的二次方程Xz^2+z+Y=0有实根的概 2020-11-01 …
已知x>0,y0,且|x||z|,化简|x+z|+|y+z|-|x+y|请列出清楚的算式和布奏和理由 2020-11-01 …
已知函数f(x)的定义域R,对任意实数m,n都有f(m+n)=f(m)×f(n),且当x>0时.0< 2020-12-08 …