早教吧作业答案频道 -->数学-->
如图,AC是圆O的直径,点B在圆O上,∠BAC=30°,BM⊥AC交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1.(1)证明:EM⊥BF;(2)求平面BEF与平面ABC所成的锐二面角的余弦值.
题目详情
如图,AC是圆O的直径,点B在圆O上,∠BAC=30°,BM⊥AC交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1.

(1)证明:EM⊥BF;
(2)求平面BEF与平面ABC所成的锐二面角的余弦值.

(1)证明:EM⊥BF;
(2)求平面BEF与平面ABC所成的锐二面角的余弦值.
▼优质解答
答案和解析
(1)证明:∵EA⊥平面ABC,BM⊂平面ABC,∴EA⊥BM.
又∵BM⊥AC,EA∩AC=A,∴BM⊥平面ACFE,
而EM⊂平面ACFE,∴BM⊥EM.∵AC是圆O的直径,∴∠ABC=90°.
又∵∠BAC=30°,AC=4,∴AB=2
,BC=2,AM=3,CM=1.∵EA⊥平面ABC,FC∥EA,
=
∴FC⊥平面ABC.∴△EAM与△FCM都是等腰直角三角形.
∴∠EMA=∠FMC=45°.∴∠EMF=90°,即EM⊥MF(也可由勾股定理证得).
∵MF∩BM=M,∴EM⊥平面MBF.
而BF⊂平面MBF,∴EM⊥BF.
(2)延长EF交AC于G,连BG,过C作CH⊥BG,连接FH.由(1)知FC⊥平面ABC,BG⊂平面ABC,∴FC⊥BG.
而FC∩CH=C,∴BG⊥平面FCH.∵FH⊂平面FCH,∴FH⊥BG,∴∠FHC为平面BEF与平面ABC所成的
二面角的平面角.
在Rt△ABC中,∵∠BAC=30°,AC=4,
∴BM=AB•sin30°=
,
由
=
=
,得GC=2.
∵BG=
=2
,
又∵△GCH∽△GBM,∴
=
,则CH=
=
=1.
∴△FCH是等腰直角三角形,∠FHC=45°,
∴平面BEF与平面ABC所成的锐二面角的余弦值为
.

又∵BM⊥AC,EA∩AC=A,∴BM⊥平面ACFE,
而EM⊂平面ACFE,∴BM⊥EM.∵AC是圆O的直径,∴∠ABC=90°.
又∵∠BAC=30°,AC=4,∴AB=2
3 |
FC |
EA |
1 |
3 |
∴FC⊥平面ABC.∴△EAM与△FCM都是等腰直角三角形.
∴∠EMA=∠FMC=45°.∴∠EMF=90°,即EM⊥MF(也可由勾股定理证得).
∵MF∩BM=M,∴EM⊥平面MBF.
而BF⊂平面MBF,∴EM⊥BF.
(2)延长EF交AC于G,连BG,过C作CH⊥BG,连接FH.由(1)知FC⊥平面ABC,BG⊂平面ABC,∴FC⊥BG.
而FC∩CH=C,∴BG⊥平面FCH.∵FH⊂平面FCH,∴FH⊥BG,∴∠FHC为平面BEF与平面ABC所成的
二面角的平面角.
在Rt△ABC中,∵∠BAC=30°,AC=4,
∴BM=AB•sin30°=
3 |
由
FC |
EA |
GC |
GA |
1 |
3 |
∵BG=
BM2+MG2 |
3 |
又∵△GCH∽△GBM,∴
GC |
BG |
CH |
BM |
GC•BM |
BG |
2×
| ||
2
|
∴△FCH是等腰直角三角形,∠FHC=45°,
∴平面BEF与平面ABC所成的锐二面角的余弦值为
| ||
2 |
看了 如图,AC是圆O的直径,点B...的网友还看了以下:
(1)已知点B(6,0)和C(-6,0),过点B的直线l与过点C的直线m相交于点A,设直线l的斜率 2020-04-11 …
如图,椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一个焦点为F(1,0)且过点(2,0) 2020-05-12 …
椭圆C x2/a2+y2/b2=1(a>b>0)的一个焦点为F(1,0),且过点(2,0) 1)求 2020-05-16 …
求证:(1)A(n+1,n+1)-A(n,n)=n^2A(n-1,n-1);(2)C(m,n+1) 2020-06-03 …
已知函数f(x)=(lnx)/x的图像为曲线C,函数g(x)=1/2*a*x+b的图像为直线l.( 2020-06-04 …
有难度M{A,B,C}==(A+B+C)/3m{A,B,C}=A(A为三数中最小的一个)则若M{A 2020-06-13 …
超难证明题求证:C(n,k)+C(n,k-1)C(m,1)+C(n,k-2)C(m,2)+.+C( 2020-07-20 …
已知定圆C:x2+(y-3)2=4,定直线m:x+3y+6=0,过A(-1,0)的一条动直线l与圆 2020-07-21 …
若半径为r的圆C,x^2+y^2+Dx+Ey+F=0,的圆心C到直线l:Dx+Ey+F=0的距离为 2020-07-26 …
直线m平行与n,点A在直线m上,点B,C在直线n上,且AB=kBC,点E为线AC上任一点,F为直线 2020-08-02 …