早教吧作业答案频道 -->数学-->
如图,AC是圆O的直径,点B在圆O上,∠BAC=30°,BM⊥AC交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1.(1)证明:EM⊥BF;(2)求平面BEF与平面ABC所成的锐二面角的余弦值.
题目详情
如图,AC是圆O的直径,点B在圆O上,∠BAC=30°,BM⊥AC交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1.

(1)证明:EM⊥BF;
(2)求平面BEF与平面ABC所成的锐二面角的余弦值.

(1)证明:EM⊥BF;
(2)求平面BEF与平面ABC所成的锐二面角的余弦值.
▼优质解答
答案和解析
(1)证明:∵EA⊥平面ABC,BM⊂平面ABC,∴EA⊥BM.
又∵BM⊥AC,EA∩AC=A,∴BM⊥平面ACFE,
而EM⊂平面ACFE,∴BM⊥EM.∵AC是圆O的直径,∴∠ABC=90°.
又∵∠BAC=30°,AC=4,∴AB=2
,BC=2,AM=3,CM=1.∵EA⊥平面ABC,FC∥EA,
=
∴FC⊥平面ABC.∴△EAM与△FCM都是等腰直角三角形.
∴∠EMA=∠FMC=45°.∴∠EMF=90°,即EM⊥MF(也可由勾股定理证得).
∵MF∩BM=M,∴EM⊥平面MBF.
而BF⊂平面MBF,∴EM⊥BF.
(2)延长EF交AC于G,连BG,过C作CH⊥BG,连接FH.由(1)知FC⊥平面ABC,BG⊂平面ABC,∴FC⊥BG.
而FC∩CH=C,∴BG⊥平面FCH.∵FH⊂平面FCH,∴FH⊥BG,∴∠FHC为平面BEF与平面ABC所成的
二面角的平面角.
在Rt△ABC中,∵∠BAC=30°,AC=4,
∴BM=AB•sin30°=
,
由
=
=
,得GC=2.
∵BG=
=2
,
又∵△GCH∽△GBM,∴
=
,则CH=
=
=1.
∴△FCH是等腰直角三角形,∠FHC=45°,
∴平面BEF与平面ABC所成的锐二面角的余弦值为
.

又∵BM⊥AC,EA∩AC=A,∴BM⊥平面ACFE,
而EM⊂平面ACFE,∴BM⊥EM.∵AC是圆O的直径,∴∠ABC=90°.
又∵∠BAC=30°,AC=4,∴AB=2
3 |
FC |
EA |
1 |
3 |
∴FC⊥平面ABC.∴△EAM与△FCM都是等腰直角三角形.
∴∠EMA=∠FMC=45°.∴∠EMF=90°,即EM⊥MF(也可由勾股定理证得).
∵MF∩BM=M,∴EM⊥平面MBF.
而BF⊂平面MBF,∴EM⊥BF.
(2)延长EF交AC于G,连BG,过C作CH⊥BG,连接FH.由(1)知FC⊥平面ABC,BG⊂平面ABC,∴FC⊥BG.
而FC∩CH=C,∴BG⊥平面FCH.∵FH⊂平面FCH,∴FH⊥BG,∴∠FHC为平面BEF与平面ABC所成的
二面角的平面角.
在Rt△ABC中,∵∠BAC=30°,AC=4,
∴BM=AB•sin30°=
3 |
由
FC |
EA |
GC |
GA |
1 |
3 |
∵BG=
BM2+MG2 |
3 |
又∵△GCH∽△GBM,∴
GC |
BG |
CH |
BM |
GC•BM |
BG |
2×
| ||
2
|
∴△FCH是等腰直角三角形,∠FHC=45°,
∴平面BEF与平面ABC所成的锐二面角的余弦值为
| ||
2 |
看了 如图,AC是圆O的直径,点B...的网友还看了以下:
基本不等式超费解130已知a>b>0,求a2+1/(a*b)+1/[a*(a-b)]的最小值.a2 2020-05-13 …
1.log89=a,log35=b,用a,b表示lg22.log155*log1545+(log1 2020-05-13 …
定义集合A*B={x|x∈A且x不属于B},若A={1,3,5,7},B={2,3,5},则: ( 2020-05-15 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
已知A={1,2,a},B={1,a的二次方},A∪B={1,2,a},求所有可能的a值已知A={ 2020-06-02 …
有难度M{A,B,C}==(A+B+C)/3m{A,B,C}=A(A为三数中最小的一个)则若M{A 2020-06-13 …
如果a=b,且a,b>0,则1=2[证明]1.a,b>02.a=b3.ab=bb4.ab-aa=b 2020-07-09 …
高二数学题,帮忙解决,要步骤的(1)设a,b,c属于R,a+b+c=0,abc0.(2)设a,b, 2020-07-22 …
已知正数abc,且a/b+c=b/c+a=c/a+b=k.则在下列四个点中,在正比例函数y=kx图像 2020-11-01 …
阅读:例:已知1/a+1/b=5/a+b,求b/a+a/b的值.因为1/a+1/b=5/a+b,所以 2020-11-15 …