早教吧作业答案频道 -->数学-->
证明不等式是什么时候要论证等号的成立比如说“若a,b,c为正实数,且a*b+b*c+c*a=0,用柯西不等式证明a+b+c大于等于根号三”时不用证明何时等号成立;而“已知a,b为正实数,求证1\a+1\b大于等于4\(a
题目详情
证明不等式是什么时候要论证等号的成立
比如说“若a,b,c为正实数,且a*b+b*c+c*a=0,用柯西不等式证明a+b+c大于等于根号三”时不用证明何时等号成立;
而“已知a,b为正实数,求证1\a+1\b大于等于4\(a+b)"时要论证a,b,c取何值时才有等号成立?
比如说“若a,b,c为正实数,且a*b+b*c+c*a=0,用柯西不等式证明a+b+c大于等于根号三”时不用证明何时等号成立;
而“已知a,b为正实数,求证1\a+1\b大于等于4\(a+b)"时要论证a,b,c取何值时才有等号成立?
▼优质解答
答案和解析
第一题打错了吧,应该是ab+bc+ca = 1.
就这两道题来说都不用讨论等号成立.
不管用什么方法,只要证出来a+b+c ≥ √3与1/a+1/b ≥ 4/(a+b)即可.
如果题目本身要求讨论等号成立条件,当然没话说.
如果没有这个要求,那就不用讨论.
不过多数题目都是可以取到等号的,如果多步放缩中等号不能同时成立,那就放过了.
因此等号成立条件常常为放缩指明方向.
另外,如果第一题换个说法,要求a+b+c的最小值,那就要验证等号能够成立.
因为最小值是需要能够取到的.
如果放缩过了,例如由4a²+b² ≥ 4ab,4b²+c² ≥ 4bc,4c²+a² ≥ 4ca,
得到5(a²+b²+c²) ≥ 4(ab+bc+ca) = 4,于是(a+b+c)² = a²+b²+c²+2(ab+bc+ca) ≥ 4/5+2 = 12/5.
证出来a+b+c ≥ 2√15/5,虽然结论是正确的,但2√15/5不是最小值,因为等号不能成立.
不过求最值的问题一般不用讨论所有取等情况,除非题目要求求出所有最值点(有时不唯一).
就这两道题来说都不用讨论等号成立.
不管用什么方法,只要证出来a+b+c ≥ √3与1/a+1/b ≥ 4/(a+b)即可.
如果题目本身要求讨论等号成立条件,当然没话说.
如果没有这个要求,那就不用讨论.
不过多数题目都是可以取到等号的,如果多步放缩中等号不能同时成立,那就放过了.
因此等号成立条件常常为放缩指明方向.
另外,如果第一题换个说法,要求a+b+c的最小值,那就要验证等号能够成立.
因为最小值是需要能够取到的.
如果放缩过了,例如由4a²+b² ≥ 4ab,4b²+c² ≥ 4bc,4c²+a² ≥ 4ca,
得到5(a²+b²+c²) ≥ 4(ab+bc+ca) = 4,于是(a+b+c)² = a²+b²+c²+2(ab+bc+ca) ≥ 4/5+2 = 12/5.
证出来a+b+c ≥ 2√15/5,虽然结论是正确的,但2√15/5不是最小值,因为等号不能成立.
不过求最值的问题一般不用讨论所有取等情况,除非题目要求求出所有最值点(有时不唯一).
看了 证明不等式是什么时候要论证等...的网友还看了以下:
证明不等式是什么时候要论证等号的成立比如说“若a,b,c为正实数,且a*b+b*c+c*a=0,用 2020-06-03 …
关于概率的证明.已知事件A,B相互独立,证明A的对立事件(A一拔),和B对立事件(B一拔),也相互 2020-06-30 …
推理否证问题用A推出B,再用B推出C,但能用C否证A吗?(如果C有足够的条件去否证A)还是这个命题 2020-07-09 …
基本不等式的求证若a,b,c是实数,求证a立方+b立方+c立方>=3abc(>=为大于等于的意思) 2020-07-21 …
已知:如图1,在△ABC中,∠ABC=45°,H是高AD、BE的交点.(1)求证:BH=AC;(2 2020-07-27 …
数学归纳法为什么要设k?数学归纳法证明的第二步是先设n=k假设n=k时命题成立证明n=k+1时命题 2020-08-01 …
用反证法证明:已知,在同一平面内有三条直线a,b,c,a⊥c,b⊥c.求证:a∥b.证明:假设所求 2020-08-01 …
如图所示,已知三角形ABC是等边三角形,以BC为直径的圆O交AB,AC于D,E,(1)求证:△DO 2020-08-03 …
(a^3+b^3+c^3)(d^3+e^3+f^3)(g^3+h^3+i^3)≥(adg+beh+c 2020-11-22 …
数学难题,在线等候.(1)设X是正实数,求证:(x+1)(x^2+1)(x^3+1)>=8x^3(2 2020-12-09 …