早教吧作业答案频道 -->数学-->
还是刚才那道题的第二问如果抛物线y=a(x-t-1)^2+t^2经过点B,这条抛物线与X轴的两个交点和他的顶点A能否构成直角三角形?若能,求出t的值,若不能,请说明理由
题目详情
还是刚才那道题的第二问
如果抛物线y=a(x-t-1)^2+t^2经过点B,这条抛物线与X轴的两个交点和他的顶点A能否构成直角三角形?若能,求出t的值,若不能,请说明理由
如果抛物线y=a(x-t-1)^2+t^2经过点B,这条抛物线与X轴的两个交点和他的顶点A能否构成直角三角形?若能,求出t的值,若不能,请说明理由
▼优质解答
答案和解析
顶点是A(t+1,t^2)了
令抛物线y=0得到 a(x-t-1)^2+t^2=0
(x-t-1)^2=-t^2/a
要使有2个交点a要为负数,也即 -a>0
x= ±√(-t^2/a)+t+1
也即交点为 C(√(-t^2/a)+t+1,0)和D(-√(-t^2/a)+t+1,0)
AC斜率为k1= [√(-t^2/a)]/-t^2
AD斜率为k2= [-√(-t^2/a)]/-t^2
k1*k2= -(-t^2/a)/t^4 =a/t^2
若能构成直角三角形,那么AC和AD是垂直的,也就是斜率积k1*k2=-1
也就是t^2=-a ,t=±√(-a)
令抛物线y=0得到 a(x-t-1)^2+t^2=0
(x-t-1)^2=-t^2/a
要使有2个交点a要为负数,也即 -a>0
x= ±√(-t^2/a)+t+1
也即交点为 C(√(-t^2/a)+t+1,0)和D(-√(-t^2/a)+t+1,0)
AC斜率为k1= [√(-t^2/a)]/-t^2
AD斜率为k2= [-√(-t^2/a)]/-t^2
k1*k2= -(-t^2/a)/t^4 =a/t^2
若能构成直角三角形,那么AC和AD是垂直的,也就是斜率积k1*k2=-1
也就是t^2=-a ,t=±√(-a)
看了 还是刚才那道题的第二问如果抛...的网友还看了以下:
(2012•阜宁县一模)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,过A点作AG 2020-05-13 …
初中数学竞赛几何证明题已知点o为等边三角形ABC的内心,直线m过点o,过A、B、C三点分别作直线m 2020-05-16 …
试证明:到三角形的三边的距离的平方和最小的点是重心的等角共轭点等角共轭点是指:三角形内一点P,过A 2020-06-03 …
(2000•海淀区)已知:如图,四边形ABCD是⊙O的内接四边形,A是弧BD的中点,过A点的切线与 2020-07-20 …
如图,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另一点C(3,0). 2020-08-01 …
如图1所示,三角形abc中,ab=ac,过b点作射线be,过c点作射线cf,使角abe=角acf且射 2020-11-03 …
(2011•宜宾)如图,边长为2的正方形ABCD的中心在直角坐标系的原点O,AD∥x轴,以O为顶点且 2020-11-12 …
1.A、B为球面上相异的两点,则过A、B两点做球的截面中最大的圆有()个A1个B2个C无数个D一个或 2020-11-30 …
如图,在△ABC中,D是BC边的中点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,连接 2020-12-25 …
如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱 2021-01-22 …