早教吧作业答案频道 -->其他-->
如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB中点,过A、N、D三点的平面交PC于M.(1)求证:DP∥平面ANC;(2)求证:M是PC中点
题目详情

(1)求证:DP∥平面ANC;
(2)求证:M是PC中点;
(3)求证:平面PBC⊥平面ADMN.
▼优质解答
答案和解析
证明:(1)连接BD,AC,设BD∩AC=O,连接NO…(1分)
∵ABCD是的菱形∴O是BD中点,又N是PB中点
∴PD∥NO…(3分)
又NO⊂平面ANC,PD⊄平面ANC…(4分)
∴PD∥平面ANC…(5分)
(2)依题意有AD∥BC∴BC∥平面ADMN…(6分)
而平面PBC∩平面ADMN=MN…(7分)
∴BC∥MN…(9分)
又N是PB中点∴M是PC中点
(3)取AD中点E,连接PE,BE,BD,
∵ABCD为边长为2的菱形,且∠BAD=60°
∴△ABD为等边三角形,又E为AD的中点
∴BE⊥AD…(12分)
又∵PE⊥AD
∴AD⊥面PBE
∴AD⊥PB …(13分)
又∵PA=AB,N为PB的中点
∴AN⊥PB…(14分)
∴PB⊥平面ADMN而PB⊂平面PBC…(15分)
∴平面PBC⊥平面ADMN…(16分)
∵ABCD是的菱形∴O是BD中点,又N是PB中点
∴PD∥NO…(3分)
又NO⊂平面ANC,PD⊄平面ANC…(4分)
∴PD∥平面ANC…(5分)
(2)依题意有AD∥BC∴BC∥平面ADMN…(6分)
而平面PBC∩平面ADMN=MN…(7分)
∴BC∥MN…(9分)
又N是PB中点∴M是PC中点
(3)取AD中点E,连接PE,BE,BD,
∵ABCD为边长为2的菱形,且∠BAD=60°
∴△ABD为等边三角形,又E为AD的中点
∴BE⊥AD…(12分)
又∵PE⊥AD
∴AD⊥面PBE
∴AD⊥PB …(13分)
又∵PA=AB,N为PB的中点
∴AN⊥PB…(14分)
∴PB⊥平面ADMN而PB⊂平面PBC…(15分)
∴平面PBC⊥平面ADMN…(16分)
看了如图,在四棱锥P-ABCD中,...的网友还看了以下:
如图 在四棱锥p-abcd中,底面abcd为梯形,ab平行于dc,dc=4,∠dab=60度,侧面 2020-05-16 …
如图,已知点P(12x+1,3x-8)的横、纵坐标恰好为某个正数的两个平方根.(1)求点P的坐标; 2020-06-13 …
PHP正则表达式如何同时取出两个条件两个结果?$str="ABC2013-10-235jf9s20 2020-07-23 …
已知平面上的曲线C及点P,在C上任取一点Q,定义线段PQ长度的最小值为点P到曲线C的距离,记作d( 2020-07-30 …
已知动点P到两个定点F1(-1,0),F2(1,0)的距离之和为23λ(λ≥1),则点P轨迹的离心 2020-07-31 …
经过下列语句intj,a[10],*p;定义后,下列语句合法的是()A.p=p+2B.p=经过下列语 2020-11-06 …
1.已知点P为三角形ABO所在平面内的一点,满足向量OP=向量OA/|向量OA|+向量OB/|向量O 2020-12-07 …
设D是正△P1P2P3及其内部的点构成的集合,点P0是△P1P2P3的中心,若集合S={P|P∈D, 2020-12-17 …
设D是正△P1P2P3及其内部的点构成的集合,点P0是△P1P2P3的中心,若集合S={P|P∈D, 2020-12-17 …
通集是什么意思L=N(P*P+(D-2b+do)^2*π^2)^0.5公式中∧是什么意思啊 2021-02-05 …