早教吧作业答案频道 -->数学-->
某数学兴趣小组开展了一次活动,如图1,正方形abcd中,ab=6,将三角形板放在正方形abcd上
题目详情
某数学兴趣小组开展了一次活动,如图1,正方形abcd中,ab=6,将三角形板放在正方形abcd上
▼优质解答
答案和解析
考点:四边形综合题.
分析:(1)证明△ADP≌△CDQ,即可得到结论:DP=DQ;
(2)证明△DEP≌△DEQ,即可得到结论:PE=QE;
(3)与(1)(2)同理,可以分别证明△ADP≌△CDQ、△DEP≌△DEQ.在Rt△BPE中,利用勾股定理求出PE(或QE)的长度,从而可求得S△DEQ= 150\7,而△DEP≌△DEQ,所以S△DEP=S△DEQ= 150\7
(1)证明:∵∠ADC=∠PDQ=90°,
∴∠ADP=∠CDQ.
在△ADP与△CDQ中,
∠DAP=∠DCQ=90°
AD=CD
∠ADP=∠CDQ
∴△ADP≌△CDQ(ASA),
∴DP=DQ.
(2)猜测:PE=QE.
证明:由(1)可知,DP=DQ.
在△DEP与△DEQ中,
DP=DQ
∠PDE=∠QDE=45°
DE=DE
∴△DEP≌△DEQ(SAS),
∴PE=QE.
(3)∵AB:AP=3:4,AB=6,
∴AP=8,BP=2.
与(1)同理,可以证明△ADP≌△CDQ,
∴CQ=AP=8.
与(2)同理,可以证明△DEP≌△DEQ,
∴PE=QE.
设QE=PE=x,则BE=BC+CQ-QE=14-x.
在Rt△BPE中,由勾股定理得:BP2+BE2=PE2,
即:22+(14-x)2=x2,
解得:x= 50\7
,即QE= 50\7
∴S△DEQ= 1\2QE•CD= 1\2×50\7×6= 150\7
∵△DEP≌△DEQ,
∴S△DEP=S△DEQ= 150\7
请采纳!O(∩_∩)O谢谢滴哈!
分析:(1)证明△ADP≌△CDQ,即可得到结论:DP=DQ;
(2)证明△DEP≌△DEQ,即可得到结论:PE=QE;
(3)与(1)(2)同理,可以分别证明△ADP≌△CDQ、△DEP≌△DEQ.在Rt△BPE中,利用勾股定理求出PE(或QE)的长度,从而可求得S△DEQ= 150\7,而△DEP≌△DEQ,所以S△DEP=S△DEQ= 150\7
(1)证明:∵∠ADC=∠PDQ=90°,
∴∠ADP=∠CDQ.
在△ADP与△CDQ中,
∠DAP=∠DCQ=90°
AD=CD
∠ADP=∠CDQ
∴△ADP≌△CDQ(ASA),
∴DP=DQ.
(2)猜测:PE=QE.
证明:由(1)可知,DP=DQ.
在△DEP与△DEQ中,
DP=DQ
∠PDE=∠QDE=45°
DE=DE
∴△DEP≌△DEQ(SAS),
∴PE=QE.
(3)∵AB:AP=3:4,AB=6,
∴AP=8,BP=2.
与(1)同理,可以证明△ADP≌△CDQ,
∴CQ=AP=8.
与(2)同理,可以证明△DEP≌△DEQ,
∴PE=QE.
设QE=PE=x,则BE=BC+CQ-QE=14-x.
在Rt△BPE中,由勾股定理得:BP2+BE2=PE2,
即:22+(14-x)2=x2,
解得:x= 50\7
,即QE= 50\7
∴S△DEQ= 1\2QE•CD= 1\2×50\7×6= 150\7
∵△DEP≌△DEQ,
∴S△DEP=S△DEQ= 150\7
请采纳!O(∩_∩)O谢谢滴哈!
看了 某数学兴趣小组开展了一次活动...的网友还看了以下:
直线Y=3X+K与坐标轴围成的三角形面积为24,则常数K的值是多少函数Y=(2\5)X+2的图象在 2020-05-13 …
设等差数列an、bn的前n项和分别为Sn和Tn,Sn/Tn=An+1/2n+7,且a5/b5=2/ 2020-07-09 …
加法交换律:a+b=b+b加法结合律:a+b+c=a+(b+c)1每份数×份数=总数总数÷每份数= 2020-07-11 …
(本小题满分16分)对于函数y=,x∈(0,,如果a,b,c是一个三角形的三边长,那么,,也是一个 2020-07-13 …
已知等比数列的前n项和Sn=4的n次方+a则a的值等于()A.-4B.-1C.0D.1∵等比数列{ 2020-07-27 …
向量a×b=b×c=c×d=d×e=e×a,问由abcde组成的是什么形状?一定是正五边形吗?怎么 2020-07-30 …
如图,有点O,O'和三角形ABC三角形A'B'C',满足下列条件:向量OA=a向量,向量OB=b向 2020-08-01 …
在三角形ABC中,BC=a,AC=b,a,b是方程x2-2√3x+2=0的两个根,且2cos(A+ 2020-08-02 …
某三相异步电动机的铭牌数据PN=10kW,UN=380V,nN=1450r/minη1=0.82,求 2020-11-02 …
请帮我解决几道关于三角形的数学题(1)在三角形ABC中,角A是最小角,角B是最大角,且2倍角B=5倍 2020-11-20 …