早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知f(x+1)=f(x-1),f(x)=f(-x+2),方程f(x)=0在[0,1]内有且只有一个根x=12,则f(x)=0在区间[0,2013]内根的个数为()A.2011B.1006C.2013D.1007

题目详情
已知f(x+1)=f(x-1),f(x)=f(-x+2),方程f(x)=0在[0,1]内有且只有一个根x=
1
2
,则f(x)=0在区间[0,2013]内根的个数为(  )
A. 2011
B. 1006
C. 2013
D. 1007
▼优质解答
答案和解析
∵f(x)=f(-x+2),∴f(x)的图象关于直线x=1对称,即f(1-x)=f(1+x).
又f(x+1)=f(x-1),∴f(x-1)=f(1-x),即f(x)=f(-x),故函数f(x)为偶函数.
再由f(x+1)=f(x-1)可得f(x+2)=f(x),故函数f(x)是周期等于2的周期函数,
∵f(
1
2
)=0,
∴f(-
1
2
)=0,再由周期性得f(-
1
2
+2)=f(
3
2
)=0,
故函数f(x)在一个周期[0,2]上有2个零点,即函数f(x)在每两个整数之间都有一个零点,
∴f(x)=0在区间[0,2013]内根的个数为2013,
故选C;