早教吧作业答案频道 -->数学-->
证明:矩阵A与A的转置A'的乘积的秩等于A的秩,即r(AA')=r(A).一个线性代数问题。
题目详情
证明:矩阵A与A的转置A'的乘积的秩等于A的秩,即r(AA')=r(A).
一个线性代数问题。
一个线性代数问题。
▼优质解答
答案和解析
设 A是 m×n 的矩阵.
可以通过证明 Ax=0 和A'Ax=0 两个n元齐次方程同解证得 r(A'A)=r(A)
1、Ax=0 肯定是 A'Ax=0 的解,好理解.
2、A'Ax=0 → x'A'Ax=0 → (Ax)' Ax=0 →Ax=0
故两个方程是同解的.
同理可得 r(AA')=r(A')
另外 有 r(A)=r(A')
所以综上 r(A)=r(A')=r(AA')=r(A'A)
可以通过证明 Ax=0 和A'Ax=0 两个n元齐次方程同解证得 r(A'A)=r(A)
1、Ax=0 肯定是 A'Ax=0 的解,好理解.
2、A'Ax=0 → x'A'Ax=0 → (Ax)' Ax=0 →Ax=0
故两个方程是同解的.
同理可得 r(AA')=r(A')
另外 有 r(A)=r(A')
所以综上 r(A)=r(A')=r(AA')=r(A'A)
看了 证明:矩阵A与A的转置A'的...的网友还看了以下:
证明:矩阵A与A的转置A'的乘积的秩等于A的秩,即r(AA')=r(A).一个线性代数问题。 2020-04-05 …
r(A矩阵的转置乘以A矩阵)=r(A)这个等式恒成立吗?其中r(A)表示矩阵A的秩.那r(AA^T 2020-05-14 …
方程组的基础解系线性无关的个数不是极大无关组的个数吗?而根据极大无关组的定义,那么R(A)=极大无 2020-05-21 …
从E-R模型向关系模型转换,一个N:M的联系转换成一个关系模式时,该关系模式的键是A.N端实体的键B 2020-05-23 …
r(A*A^T)=r(A^T*A)=r(A)证明方程AX=0与A^TAX=0同解AX=0显然有A^ 2020-06-10 …
如图所示A、B两个物体放在旋转圆台上,动摩擦因数均为μ,A的质量为3m,B的质量均为m,A离轴为R 2020-07-25 …
什么是二项式的通式?在二项式定理(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+ 2020-07-31 …
矩阵A^2=0A≠0也就是A^2α=λ^2α=0从而λ=0,是不是有n重λ=0?也就是n-r(A)个 2020-11-19 …
由国名的每个字母想到的一句话例:Italy转化为:Itrustandloveyou.(我相信你并且爱 2020-11-23 …
由霍尔周期如何算出转速用霍尔元件ah44e测直流电机转速,一个就够了么?说测试脉冲,两个脉冲的时间间 2020-12-09 …