早教吧作业答案频道 -->数学-->
线性代数1.设α1,α2,…,αs的秩为r且其中每个向量都可以由α1,α2,…αr线性表示,证明:α1,α2…,αr为α1,α2,…,αs的一个极大无关组!2.设A,B都是n阶矩阵,且AB=0,证明R(A)+R(B)≤n.3.设A为n阶矩阵,且A²
题目详情
线性代数
1.设α1,α2,…,αs的秩为r且其中每个向量都可以由α1,α2,…αr线性表示,证明:α1,α2…,αr为α1,α2,…,αs的一个极大无关组!
2.设A,B都是n阶矩阵,且AB=0,证明R(A)+R(B)≤n.
3.设A为n阶矩阵,且A²=A,证明:R(A)+R(A-E)=n.
1.设α1,α2,…,αs的秩为r且其中每个向量都可以由α1,α2,…αr线性表示,证明:α1,α2…,αr为α1,α2,…,αs的一个极大无关组!
2.设A,B都是n阶矩阵,且AB=0,证明R(A)+R(B)≤n.
3.设A为n阶矩阵,且A²=A,证明:R(A)+R(A-E)=n.
▼优质解答
答案和解析
1、只要证明了α1,α2…,αr线性无关即可.
由已知条件,向量组α1,α2,…,αs与向量组α1,α2,…αr等价,所以等秩,所以α1,α2,…,αr的秩是r,所以α1,α2,…αr线性无关.
所以α1,α2…,αr为α1,α2,…,αs的一个极大无关组.
2、设B=(b1,b2,...,bn),则AB=A(b1,b2,...,bn)=(Ab1,Ab2,...,Abn)=0,所以Abi=0(i=1,2,...,n),所以向量组b1,b2,...,bn可以由Ax=0的一组基础解系a1,a2,...,as线性表示,其中s=n-R(A).所以向量组b1,b2,...bn的秩R(B)≤n-R(A),所以R(A)+R(B)≤n.
3、首先,A²-A=A(A-E)=0,由第二题得R(A)+R(A-E)≤n.
其次,R(A)+R(A-E)=R(A)+R(E-A)≥R(A+E-A)=R(E)=n.
所以,R(A)+R(A-E)=n.
由已知条件,向量组α1,α2,…,αs与向量组α1,α2,…αr等价,所以等秩,所以α1,α2,…,αr的秩是r,所以α1,α2,…αr线性无关.
所以α1,α2…,αr为α1,α2,…,αs的一个极大无关组.
2、设B=(b1,b2,...,bn),则AB=A(b1,b2,...,bn)=(Ab1,Ab2,...,Abn)=0,所以Abi=0(i=1,2,...,n),所以向量组b1,b2,...,bn可以由Ax=0的一组基础解系a1,a2,...,as线性表示,其中s=n-R(A).所以向量组b1,b2,...bn的秩R(B)≤n-R(A),所以R(A)+R(B)≤n.
3、首先,A²-A=A(A-E)=0,由第二题得R(A)+R(A-E)≤n.
其次,R(A)+R(A-E)=R(A)+R(E-A)≥R(A+E-A)=R(E)=n.
所以,R(A)+R(A-E)=n.
看了 线性代数1.设α1,α2,…...的网友还看了以下:
△ABC三边abc和面积满足S=c2-(a-b)2,且a+b=2△ABC的三边a,b,c和面积S满 2020-04-27 …
在三角形ABC中,角A、B、C所对的边分别为a、b、c,设S为三角形ABC的面积,满足S=根号3/ 2020-05-15 …
△ABC的面积为S,外接圆半径R=√17,a,b,c分别是角A、B、C的对边,设S=a^2-(b- 2020-05-16 …
求三角形面积S的最大值.已知△ABC三边a、b、c与面积S有如下关系:S=a^2-(b-c)^2且 2020-06-08 …
定义闭集合S:若a,b∈S,则a+b∈S,a-b∈S.(1)举一例,真包含于R的无限闭集合;(2) 2020-06-23 …
在△ABC中,角A、B、C的对边分别为a,b,c,S为△ABC的面积1)若4S=a^2+b^2-c 2020-07-27 …
补全对话.A:Hello,Jim!(1)?B:Itisasharpener.A:(2)?B:S-H- 2020-10-30 …
几道数学填空题1.已知a、b、c、d成比例,a=2,b=3,d=6,则c=.2.在比例尺为1:600 2020-11-15 …
1、向量m=(a,2),n=(1,b-1),a>0,b>0,m,n的夹角为π/2,求1/a+2/b的 2020-11-24 …
已知数列{a(n)}的前n项和为S(n),且满足a(1)=1,a(n+1)=S(n)+1(n∈N(+ 2021-02-09 …