早教吧
育儿知识
作业答案
考试题库
百科
知识分享
创建时间
资源类别
相关度排序
共找到 219 与如果存在f 相关的结果,耗时23 ms
设函数f(x)的定义域为R,如果存在函数g(x)=ax(a为常数),使得f(x)≥g(x)对于一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.已知g(x)=ax是函数f(x)=ex的一个承托
其他
]C.(0,e]D.[0,e
定义在实数集R上的函数f(x),如果存在函数g(x)=Ax+B(A、B为常数),使得f(x)≥g(x)对一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.给出如下四个命题:①对于给定
其他
函数f(x)不存在承托函数;
定义在实数集R上的函数f(x),如果存在函数g(x)=Ax+B(A,B为常数),使得f(x)≥g(x)对一切实数x都成立,那么称为g(x)为函数f(x)的一个承托函数,给出如下命题:(1)定义域
其他
(x)=2x的一个承托函数;
定义域为D的单调函数y=f(x),如果存在区间[a,b]⊆D,满足当定义域为是[a,b]时,f(x)的值域也是[a,b],则称[a,b]是该函数的“可协调区间”;如果函数y=(a2+a)x−1a2x(a≠0)的一个可协
其他
B.3C.233D.4
设函数f(x)=ax+xlnx,g(x)=x3-x2-3.(I)如果存在x1、x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;(II)如果对于任意的s、t∈[12,2],都有f(s)≥g(t)成立,求
数学
高等代数爱森斯坦判别法,已知f(x),如果不存在一个素数p满足判别法,那是不是说明f(x)就是不可约的?
数学
我们称映射:f:A→B为一个“一一映射”,如果对于A中不同的元素,在B中都有不同的元素与之对应,而且,对于B中的任何一个元素都有原象存在的话.已知集合A={1,2,3,4},B={a,b,c,d},设集合A到B的
数学
,那么等于( ) (
同济高等数学第六版关于反常积分的极限审敛法1定理如下:设函数f(x)在区间[a,+无穷)上连续,且f(x)≥0.如果存在常数p>1使得lim(x->正无穷)x^(p)f(x)存在,则反常积分f(x)dx|a至正无穷收敛;如果lim
数学
则反常积分……发散.第一部分
设[a,b]是一个有限闭区间,如果对任意x0属于[a,b],f(x)在x=x0处的极限都存在,证明:f(x)在闭区间[a,b]上有界.求解答思路,是否用反证法?
数学
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得.那么,我们称M是函数y=f(x)的.
数学
<
2
3
4
5
6
7
8
9
10
11
>
热门搜索: