早教吧作业答案频道 -->其他-->
设函数f(x)的定义域为R,如果存在函数g(x)=ax(a为常数),使得f(x)≥g(x)对于一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.已知g(x)=ax是函数f(x)=ex的一个承托
题目详情
设函数f(x)的定义域为R,如果存在函数g(x)=ax(a为常数),使得f(x)≥g(x)对于一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.已知g(x)=ax是函数f(x)=ex的一个承托函数,那么实数a的取值范围是( )
A.(0,
]
B.[0,
]
C.(0,e]
D.[0,e]
A.(0,
| 1 |
| e |
B.[0,
| 1 |
| e |
C.(0,e]
D.[0,e]
▼优质解答
答案和解析
令h(x)=ex-ax,则h′(x)=ex-a,
由题意,a=0时,结论成立;
a≠0时,令h′(x)=ex-a=0,则x=lna
∴函数h(x)在(-∞,lna)上为减函数,在(lna,+∞)上为增函数
∴x=lna时,函数取得最小值a-alna
∵g(x)=ax是函数f(x)=ex的一个承托函数,
∴a-alna≥0
∴lna≤1
∴0<a≤e
综上,0≤a≤e,
故选D.
由题意,a=0时,结论成立;
a≠0时,令h′(x)=ex-a=0,则x=lna
∴函数h(x)在(-∞,lna)上为减函数,在(lna,+∞)上为增函数
∴x=lna时,函数取得最小值a-alna
∵g(x)=ax是函数f(x)=ex的一个承托函数,
∴a-alna≥0
∴lna≤1
∴0<a≤e
综上,0≤a≤e,
故选D.
看了 设函数f(x)的定义域为R,...的网友还看了以下:
设f(x)为奇函数,g(x)为偶函数,则下列函数中是奇函数的是()A.f(g(x))B.g(f(x 2020-04-06 …
\\x0d\\x0d\\x0d\\x0d\\x0d\\x0df(x)与g(x)是定义在R上的两个可 2020-05-13 …
一个函数关于某点对称的另一个函数比如2次函数y=ax^2+bx+c与G关于对称求G函数的解析式怎么 2020-05-16 …
有三个函数f(x)=tan(x+pi/4),g(x)=(1+tanx)(1-tanx),h(x)= 2020-05-17 …
若F(x)=g(x)*f(x)为偶函数且函数y=g(x)为奇函数,则请写出一个符合条件的函数y=f 2020-06-06 …
复合函数的周期性和奇偶性是否和内函数的周期性和奇偶性相同函数f[g(x)]为复合函数,如果内函数g 2020-06-06 …
复合函数奇偶性质的证明对于复合函数F(x)=f[g(x)](1)若g(x)为偶函数,则F(x)为偶 2020-06-08 …
设f(x),g(x)都在(-∞,+∞)内有定义,且f(x)为奇函数,g(x)为偶函数,则f[g(x 2020-06-09 …
已知函数f(x)=ax3-3ax,g(x)=bx2+clnx,且g(x)在点(1,g(1))处的切 2020-06-16 …
有一部搞不懂已知函数f(x)为偶函数,g(x)为奇函数,且f(x)+g(x)=x^2+2x+3,求 2020-06-26 …