早教吧作业答案频道 -->数学-->
设等比数列an的前n项的和为Sn,若S6/S3=3,则S9/S6=
题目详情
▼优质解答
答案和解析
先说一个等比数列的性质:记S(n)为等比数列an的前n项和,P(n)为S(m*n)-S((m-1)*n),m=1,2,……;则P(n)也为等比数列;且公比为q^n
证明:设等比数列为:a(n)=a1*q^(n-1)
记S(n)为前n项和,则有:
S(2n)-S(n)=a(n+1)+a(n+2)+……+a(2n)
=a1*q^n(1+q+……+q^(n-1))
=q^n*S(n)
同样:
S(3n)-S(2n)=q^(2n)*S(n)
同理可得:
S(m*n)-S((m-1)n)=q^((m-1)n)*S(n)
故有:
S(m*n)-S((m-1)*n),m=1,2,……;是等比数列,公比为q^n
(注:你可以只记住结论也行,会用就可以)
由上面我们知道,S3,S6-S3,S9-S6也是等比数列
因为S6/S3=3
所以S6=3S3,S6-S3=3S3-S3=2S3
所以S9-S6=(S6-S3)^2/S3=(2S3)^2/S3=4S3
所以S9=S6+4S3=2S3+4S3=6S3
所以S9/S6=6S3/2S3=3
证明:设等比数列为:a(n)=a1*q^(n-1)
记S(n)为前n项和,则有:
S(2n)-S(n)=a(n+1)+a(n+2)+……+a(2n)
=a1*q^n(1+q+……+q^(n-1))
=q^n*S(n)
同样:
S(3n)-S(2n)=q^(2n)*S(n)
同理可得:
S(m*n)-S((m-1)n)=q^((m-1)n)*S(n)
故有:
S(m*n)-S((m-1)*n),m=1,2,……;是等比数列,公比为q^n
(注:你可以只记住结论也行,会用就可以)
由上面我们知道,S3,S6-S3,S9-S6也是等比数列
因为S6/S3=3
所以S6=3S3,S6-S3=3S3-S3=2S3
所以S9-S6=(S6-S3)^2/S3=(2S3)^2/S3=4S3
所以S9=S6+4S3=2S3+4S3=6S3
所以S9/S6=6S3/2S3=3
看了 设等比数列an的前n项的和为...的网友还看了以下:
求数列0,1,1,2,2,3,3,4,4.的前n项和S当n是奇数时.S=2*{[(n-1)/2]* 2020-04-09 …
是GREOG上set3的第14题,看不懂解析.S是所有正整数n的集合,n满足n²同时是24和108 2020-05-22 …
等差数列,若S奇表示奇数项的和,S偶表示偶数项的和,公差为d,则①当项数为偶数2n时,S偶-S奇= 2020-06-26 …
已知数列{an}的前n项和为Sn,a1=1,a2=3,s(n+1)=4Sn-3S(n-1),(n大 2020-07-09 …
急求递推数列数列a(n)前N项和为S(n)s(n+1)=(s(n)+2^0.5)^2a(1)=2求 2020-07-22 …
定义:若数列{an}满足对任意的n∈N*,2an+1>an+an+2,且存在最小的上界S,使得an 2020-07-31 …
已知数列{a[n]}的前n项和为S[n],且满足a[n]+2S[n]×S[n-1]=0(n≥0),a 2020-11-01 …
如果一个数列从第2项起,每一项与它前一项的差都大于3,则称这个数列为“S型数列”.(1)已知数列{a 2020-11-20 …
一道数学题(数列)已知数列{a[n]}的前n项和为S[n],并且满足a[1]=2,na[n+1]=S 2020-12-05 …
怎样记数列的一些公式?如等差数列项数为2nS偶-S奇=ndS奇/S偶=a(n)/a(n+1)项数为2 2021-02-09 …