早教吧作业答案频道 -->数学-->
已知数列an满足a1=1╱4an=an-1(-1)n╱an-1-2设bn=1╱an2,求数列bn的前n项和设cn=ansin(2n-1已知数列{an}满足a1=1/4,an=an-1/[(-1)∧n·an-1-2](n≥2,n∈N)(1)求数列{an}的通项公式(2)设bn=1/an²,求数列bn的前
题目详情
已知数列an满足a1=1╱4an=an-1(-1)n╱an-1-2设bn=1╱an2,求数列bn的前n项和设cn=ansin(2n-1
已知数列{an}满足a1=1/4 ,an=an-1/[(-1)∧n·an-1-2] (n≥2,n∈N) (1)求数列{an}的通项公式(2)设bn=1/an²,求数列bn的前n项和sn(3)设cn=ansin[(2n-1)π/2],数列cn的前n项和为Tn,求证:对于任意的n∈N,Tn<4/7
已知数列{an}满足a1=1/4 ,an=an-1/[(-1)∧n·an-1-2] (n≥2,n∈N) (1)求数列{an}的通项公式(2)设bn=1/an²,求数列bn的前n项和sn(3)设cn=ansin[(2n-1)π/2],数列cn的前n项和为Tn,求证:对于任意的n∈N,Tn<4/7
▼优质解答
答案和解析
a(n+1) = a(n)/[(-1)^(n+1)a(n)-2],
若a(n+1)=0,则a(n)=0,...,a(1)=0,与a(1)=1/4矛盾.因此,a(n)不为0.
1/a(n+1) = [(-1)^(n+1)a(n)-2]/a(n) = (-1)^(n+1) - 2/a(n) = -(-1)^n -2/a(n)
= (-2)*(-1)^n + (-1)^n - 2/a(n),
1/a(n+1) - (-1)^n = -2/a(n) -2*(-1)^n,
1/a(n+1) + (-1)^(n+1) = -2[1/a(n) + (-1)^n],
{1/a(n) + (-1)^n}是首项为1/a(1) + (-1) = 3,公比为-2的等比数列.
1/a(n) + (-1)^n = 3(-2)^(n-1),
1/a(n) = (-1)^(n-1) + 3(-2)^(n-1)
b(n) = 1/[a(n)]^2 = [(-1)^(n-1) + 3(-2)^(n-1)]^2 = 1 + 9*4^(n-1)+ 6*2^(n-1),
s(n) = b(1)+b(2)+...+b(n) = n + 9[4^n - 1]/(4-1) + 6[2^n - 1]/(2-1)
= n + 3[4^n - 1] +6[2^n - 1]
= n - 9 + 3*4^n + 6*2^n
1/a(n) = (-1)^(n-1) + 3(-2)^(n-1),
1/a(2n) = (-1)^(2n-1) + 3(-2)^(2n-1) = -3*2^(2n-1) - 1 = -6*4^(n-1) - 1,
a(2n) = -1/[6*4^(n-1) + 1].
1/a(2n-1) = (-1)^(2n-2) +3(-2)^(2n-2) = 1 + 3*4^(n-1),
a(2n-1) = 1/[1+3*4^(n-1)].
c(n) = a(n)sin[(2n-1)PI/2].
c(2n) = a(2n)sin[(4n-1)PI/2] = a(2n)sin[-PI/2] = -a(2n) = 1/[6*4^(n-1) + 1].
c(2n-1) = a(2n-1)sin[(4n-3)PI/2] = a(2n-1)sin[-3PI/2] = a(2n-1) = 1/[1+3*4^(n-1)].
c(2n-1)+c(2n) = 1/[1+3*4^(n-1)] + 1/[6*4^(n-1)+1] < 1/[3*4^(n-1)] + 1/[6*4^(n-1)]
= (1/2)(1/4)^(n-1),
t(n) = c(1)+c(2)+...+c(n).
t(2n) = c(1)+c(2) + c(3)+c(4) + ...+ c(2n-1)+c(2n)
< (1/2)[1 + 1/4 + ...+ (1/4)^(n-1)]
= (1/2)[1 - (1/4)^n]/(1-1/4)
= (2/3)[1- (1/4)^n]
< 2/3
t(2n-1) = t(2n) - c(2n) = t(2n) - 1/[6*4^(n-1)+1] < t(2n) < 2/3.
因此,总有,
t(n) < 2/3
若a(n+1)=0,则a(n)=0,...,a(1)=0,与a(1)=1/4矛盾.因此,a(n)不为0.
1/a(n+1) = [(-1)^(n+1)a(n)-2]/a(n) = (-1)^(n+1) - 2/a(n) = -(-1)^n -2/a(n)
= (-2)*(-1)^n + (-1)^n - 2/a(n),
1/a(n+1) - (-1)^n = -2/a(n) -2*(-1)^n,
1/a(n+1) + (-1)^(n+1) = -2[1/a(n) + (-1)^n],
{1/a(n) + (-1)^n}是首项为1/a(1) + (-1) = 3,公比为-2的等比数列.
1/a(n) + (-1)^n = 3(-2)^(n-1),
1/a(n) = (-1)^(n-1) + 3(-2)^(n-1)
b(n) = 1/[a(n)]^2 = [(-1)^(n-1) + 3(-2)^(n-1)]^2 = 1 + 9*4^(n-1)+ 6*2^(n-1),
s(n) = b(1)+b(2)+...+b(n) = n + 9[4^n - 1]/(4-1) + 6[2^n - 1]/(2-1)
= n + 3[4^n - 1] +6[2^n - 1]
= n - 9 + 3*4^n + 6*2^n
1/a(n) = (-1)^(n-1) + 3(-2)^(n-1),
1/a(2n) = (-1)^(2n-1) + 3(-2)^(2n-1) = -3*2^(2n-1) - 1 = -6*4^(n-1) - 1,
a(2n) = -1/[6*4^(n-1) + 1].
1/a(2n-1) = (-1)^(2n-2) +3(-2)^(2n-2) = 1 + 3*4^(n-1),
a(2n-1) = 1/[1+3*4^(n-1)].
c(n) = a(n)sin[(2n-1)PI/2].
c(2n) = a(2n)sin[(4n-1)PI/2] = a(2n)sin[-PI/2] = -a(2n) = 1/[6*4^(n-1) + 1].
c(2n-1) = a(2n-1)sin[(4n-3)PI/2] = a(2n-1)sin[-3PI/2] = a(2n-1) = 1/[1+3*4^(n-1)].
c(2n-1)+c(2n) = 1/[1+3*4^(n-1)] + 1/[6*4^(n-1)+1] < 1/[3*4^(n-1)] + 1/[6*4^(n-1)]
= (1/2)(1/4)^(n-1),
t(n) = c(1)+c(2)+...+c(n).
t(2n) = c(1)+c(2) + c(3)+c(4) + ...+ c(2n-1)+c(2n)
< (1/2)[1 + 1/4 + ...+ (1/4)^(n-1)]
= (1/2)[1 - (1/4)^n]/(1-1/4)
= (2/3)[1- (1/4)^n]
< 2/3
t(2n-1) = t(2n) - c(2n) = t(2n) - 1/[6*4^(n-1)+1] < t(2n) < 2/3.
因此,总有,
t(n) < 2/3
看了 已知数列an满足a1=1╱4...的网友还看了以下:
已知递增数列{an}满足:a1=1,2a(n+1)=an+a(n+2)(n∈N*),且a1,a2, 2020-05-13 …
2^2-1^2=2*1+13^2-2^2=2*2+14^2-3^2=2*3+1……(n+1)^2- 2020-05-19 …
记f(n)=(3n+2)(C22+C23+C24+…+C2n)(n≥2,n∈N*).(1)求f(2 2020-06-17 …
已知数列{an}是等差数列,且满足:a1+a2+a3=6,a5=5;数列{bn}满足:bn-bn- 2020-07-09 …
求n/(n^2+1)+n/(n^2+2^2)+……+n/(n^2+n^2)在n趋于无穷时的极限求n 2020-07-20 …
已知数列{an}的前n项和为Sn,Sn与an满足关系Sn=2-(n+2)an/n(n∈N*)(1) 2020-07-28 …
问:将M={1,2,3,4},N={2,4,6,8},f:n=2m,n属于N,m属于M用映射符号表 2020-07-30 …
用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3·5·…(2n-1)(n∈N*)时, 2020-08-03 …
(2011•钟祥市模拟)设函数f(x)=xn(n≥2,n∈N*)(1)若Fn(x)=f(x-a)+f 2020-11-13 …
我们可以通过计算求得:1+2+3+...+n=n*(n+1)除以2,其中n是正整数,现在我们来研究一 2020-12-04 …