早教吧作业答案频道 -->数学-->
计算行列式a^n(a-1)^n……(a-n)^na^n-1(a-1)^n-1……(a-n)^n-1……………………………………aa-1……a-n11……1
题目详情
计算行列式
a^n (a-1)^n …… (a-n)^n
a^n-1 (a-1)^n-1 ……(a-n)^n-1
……………………………………
a a-1 …… a-n
1 1 …… 1
a^n (a-1)^n …… (a-n)^n
a^n-1 (a-1)^n-1 ……(a-n)^n-1
……………………………………
a a-1 …… a-n
1 1 …… 1
▼优质解答
答案和解析
将第1行依次与第2,3,...,n行交换,一直交换到第n行
a^(n-1) (a-1)^(n-1) … (a-n)^(n-1)
...
...
1 1 … 1
a^n (a-1)^n … (a-n)^n
将第1行依次与第2,3,...,n-1行交换,一直交换到第n-1行
a^(n-2) (a-1)^(n-2) … (a-n)^(n-2)
...
...
1 1 … 1
a^(n-1) (a-1)^(n-1) … (a-n)^(n-1)
a^n (a-1)^n … (a-n)^n
如此类似交换,一直交换为:
1 1 … 1
a a-1 … a-n
...
...
a^(n-1) (a-1)^(n-1) … (a-n)^(n-1)
a^n (a-1)^n … (a-n)^n
考虑到交换两行行列式变符号
将行列式的列作同样的交换,得
1 … 1 1
a-n … a-1 a
...
...
(a-n)^(n-1) … (a-1)^(n-1) a^(n-1)
(a-n)^n … (a-1)^n a^n
这样,总的交换次数为偶数,故等式的符号不变.
且此为Vandemonde行列式
D = n!(n-1)!...3!2!1!
a^(n-1) (a-1)^(n-1) … (a-n)^(n-1)
...
...
1 1 … 1
a^n (a-1)^n … (a-n)^n
将第1行依次与第2,3,...,n-1行交换,一直交换到第n-1行
a^(n-2) (a-1)^(n-2) … (a-n)^(n-2)
...
...
1 1 … 1
a^(n-1) (a-1)^(n-1) … (a-n)^(n-1)
a^n (a-1)^n … (a-n)^n
如此类似交换,一直交换为:
1 1 … 1
a a-1 … a-n
...
...
a^(n-1) (a-1)^(n-1) … (a-n)^(n-1)
a^n (a-1)^n … (a-n)^n
考虑到交换两行行列式变符号
将行列式的列作同样的交换,得
1 … 1 1
a-n … a-1 a
...
...
(a-n)^(n-1) … (a-1)^(n-1) a^(n-1)
(a-n)^n … (a-1)^n a^n
这样,总的交换次数为偶数,故等式的符号不变.
且此为Vandemonde行列式
D = n!(n-1)!...3!2!1!
看了 计算行列式a^n(a-1)^...的网友还看了以下:
已知递增数列{an}满足:a1=1,2a(n+1)=an+a(n+2)(n∈N*),且a1,a2, 2020-05-13 …
二次函数y=n(n+1)X^2-(2n+1)X+1 ,n=1,2,3.时,其图像在X轴上截得线段长 2020-05-16 …
如何用MATLAB构造满足某条件的N*(N-1)的列满秩矩阵I(n)=(1,.,1)是个1*n的向 2020-06-27 …
用a^n-b^n=(a-b)(a^(n-1)+a^(n-2)*b+...+ab^(n-2)+b^( 2020-07-14 …
一道高一数列题数列{an}的首项a1=3且对任意自然数n都有2/(an-an+1)=n(n+1)求 2020-07-30 …
(一)已知无穷数列1*2,2*3,3*4,...,n(n+1),.1、求这个数列的第10项,第31 2020-08-02 …
1、已知lim(3^n)/[3^(n+1)+(a+1)^n]=1/3,则a的取值范围是()A、a小 2020-08-02 …
1+2+3+4+5+.+n=0.5n^2+n1^2+2^2+3^2.+n^2=n(n+1)(2n+ 2020-08-03 …
若x(x+2)分之5x+4,就是5x+4/x(x+2)=A/x+B/x+2,求常数A,B的值.证明: 2020-11-16 …
a^n+a^(n-1)+a^(n-2)+……+a^1+a^0这个是什么来着?a^n+a^(n-1)+ 2021-01-04 …