早教吧作业答案频道 -->数学-->
函数f:R→R满足下述条件:对所有实数x,有f(x+19)≤f(x)+19 和 f(x+94)≥f(x)+94.求证:对所有实数x,f(x+1)=f(x)+1.
题目详情
函数f:R→R满足下述条件:对所有实数x,有f(x+19)≤f(x)+19 和 f(x+94)≥f(x)+94.求证:对所有实数x,f(x+1)=f(x)+1.
▼优质解答
答案和解析
一楼的反证法有漏洞.按这个证法,可以证明f(x+19·94/n)=f(x)+19·94/n对任意大的自然数n都成立,那么当n→+∞时,岂不是可以证明f(x)有无穷小的正周期,那么f(x)岂不只能是常函数了?
寂寂落定的漏洞在于:事先肯定了f(x+1)与f(x)+1有恒定方向的不等式成立.这可不一定呀.
其实,我们只能证明f(x+1)=f(x)+1,即可得到最小正周期为1.证明如下:
∵f(x+19)≤f(x)+19,∴f(x+19n)≤f(x+19(n-1))+19≤…≤f(x)+19n
由于95=19·n,所以f(x)+95≥f(x+95)=f(x+1+94)≥f(x+1)+94
得f(x+1)≤f(x)+1
同理,由f(x+94)≥f(x)+94得f(x+94m)≥f(x)+94m
取m=18,因94·18=1692=19·89+1,所以f(x)+1692≤f(x+1692)≤f(x+1)+1691
得f(x+1)≥f(x)+1
所以f(x+1)=f(x)+1
寂寂落定的漏洞在于:事先肯定了f(x+1)与f(x)+1有恒定方向的不等式成立.这可不一定呀.
其实,我们只能证明f(x+1)=f(x)+1,即可得到最小正周期为1.证明如下:
∵f(x+19)≤f(x)+19,∴f(x+19n)≤f(x+19(n-1))+19≤…≤f(x)+19n
由于95=19·n,所以f(x)+95≥f(x+95)=f(x+1+94)≥f(x+1)+94
得f(x+1)≤f(x)+1
同理,由f(x+94)≥f(x)+94得f(x+94m)≥f(x)+94m
取m=18,因94·18=1692=19·89+1,所以f(x)+1692≤f(x+1692)≤f(x+1)+1691
得f(x+1)≥f(x)+1
所以f(x+1)=f(x)+1
看了 函数f:R→R满足下述条件:...的网友还看了以下:
函数f:R→R满足下述条件:对所有实数x,有f(x+19)≤f(x)+19 和 f(x+94)≥f 2020-05-17 …
已知抛物线y=-(x-m)2+1与x数的交点为A,B(B在A的右边),与y轴的交点为C,顶点为D. 2020-06-29 …
已知抛物线y=-(x-m)2+1与x数的交点为A,B(B在A的右边),与y轴的交点为C,顶点为D. 2020-07-10 …
已知抛物线y=-(x-m)2+1与x数的交点为A,B(B在A的右边),与y轴的交点为C,顶点为D. 2020-07-20 …
已知函数f(x)=e|x-1|,x>0-x2-2x+1,x≤0,若关于x的方程f2(x)-3f(x 2020-07-26 …
5道高中解方程数学题、悬赏、8.02上午12:00之前做完、谢谢^是多少次方的符号1.(1/2)^ 2020-08-02 …
1.如果(3x-a)(x+1)的计算结果中不含x的一次项,那么a等于多少?2.已知x^2+ax-12 2020-10-31 …
读“北半球某陆地局部图”,图中X、Y为等高线(等高距为100米),L为河流,对角线为经线。据此回答5 2020-11-06 …
1.求方程13x+30y=4的全部整数解2.已知a>0,b>0,且满足a+根号a=2008,b^2+ 2020-11-07 …
关于因式分解1.已知4x^2+4x+1=m(x+n)^2,则m=,n=.2.已知x^2-x+1=0, 2021-02-02 …