早教吧作业答案频道 -->数学-->
已知抛物线y=-(x-m)2+1与x数的交点为A,B(B在A的右边),与y轴的交点为C,顶点为D.(1)当m=1时,判断△ABD的形状,并说明理由;(2)当点B在x轴的正半轴上,点C在y轴的负半轴上时,是
题目详情
已知抛物线y=-(x-m)2+1与x数的交点为A,B(B在A的右边),与y轴的交点为C,顶点为D.
(1)当m=1时,判断△ABD的形状,并说明理由;
(2)当点B在x轴的正半轴上,点C在y轴的负半轴上时,是否存在某个m值,使得△BOC为等腰三角形?若存在,求出m的值;若不存在,请说明理由.
(1)当m=1时,判断△ABD的形状,并说明理由;
(2)当点B在x轴的正半轴上,点C在y轴的负半轴上时,是否存在某个m值,使得△BOC为等腰三角形?若存在,求出m的值;若不存在,请说明理由.
▼优质解答
答案和解析
(1)将m=1代入y=-(x-m)2+1,
得y=-(x-1)2+1,即y=-x2+2x,
顶点D(1,1).
令y=0,得-x2+2x=0,解得x=0或2,
所以A(0,0),B(2,0),
∵AD2=(1-0)2+(1-0)2=2,BD2=(1-2)2+(1-0)2=2,AB=2,
∴AD=BD=
,AD2+BD2=AB2=4,
∴△ABD是等腰直角三角形;
(2)存在某个m的值,使得△BOC为等腰三角形.
∵当y=0时,-(x-m)2+1=0,即(x-m)2=1,
∴x1=m-1,x2=m+1.
∵点B在点A的右边,
∴A(m-1,0),B(m+1,0).
∵点B在x轴的正半轴上,
∴OB=m+1.
∵当x=0时,y=1-m2,点C在y轴的负半轴上,
∴OC=m2-1.
当△BOC为等腰三角形时,OB=OC,
∴m2-1=m+1,
整理得m2-m-2=0,
解得m=2或m=-1(因为对称轴在y轴的右侧,m>0,所以不合要求,舍去),
故存在△BOC为等腰三角形的情形,此时m=2.
得y=-(x-1)2+1,即y=-x2+2x,
顶点D(1,1).
令y=0,得-x2+2x=0,解得x=0或2,
所以A(0,0),B(2,0),
∵AD2=(1-0)2+(1-0)2=2,BD2=(1-2)2+(1-0)2=2,AB=2,
∴AD=BD=
2 |
∴△ABD是等腰直角三角形;

∵当y=0时,-(x-m)2+1=0,即(x-m)2=1,
∴x1=m-1,x2=m+1.
∵点B在点A的右边,
∴A(m-1,0),B(m+1,0).
∵点B在x轴的正半轴上,
∴OB=m+1.
∵当x=0时,y=1-m2,点C在y轴的负半轴上,
∴OC=m2-1.
当△BOC为等腰三角形时,OB=OC,
∴m2-1=m+1,
整理得m2-m-2=0,
解得m=2或m=-1(因为对称轴在y轴的右侧,m>0,所以不合要求,舍去),
故存在△BOC为等腰三角形的情形,此时m=2.
看了 已知抛物线y=-(x-m)2...的网友还看了以下:
从一动物细胞中得到两类大分子有机物x、y,已知细胞中x的含量大于y.x含有化学元素N,有的还含有S 2020-04-13 …
分子式为C8H8的两种同分异构体X和Y.X是一种芳香烃,分子中只有一个环;Y俗称立方烷,其核磁共振 2020-05-13 …
分子式为C8H8的两种同分异构体X和Y.X是一种芳香烃,分子中只有一个环;Y是立方体结构,俗称立方 2020-05-13 …
f(-|x|)与f(|x|)分别由f(x)怎样得来?这是我的理解,你们仔细看看对不对.函数y=f( 2020-06-03 …
在平面直角坐标系中,将抛物线y=x2-4先向右平移两个单位,再向上平移两个单位,得到的抛物线的解析 2020-06-14 …
分子式为C8H8的两种同分异构体X和Y.X是一种芳香烃,分子中只有一个环;Y俗称立方烷,其核磁共振 2020-06-22 …
若在右半平面x>0上的向量A(x,y)={2xy(x^4+y^2)^λ,-x^2(x^4+y^2) 2020-06-27 …
将抛物线y=3x2向右平移两个单位,再向下平移4个单位,所得抛物线是()A.y=3(x+2)2+4 2020-07-13 …
下列各式从左到右的变形,正确的是()A.-x-y=-(x-y)B.-a+b=-(a+b)C.(y- 2020-08-02 …
已知5x=8y(x和y均不为0),则x:y=.x和y成比例. 2020-10-31 …