早教吧作业答案频道 -->数学-->
已知抛物线y=-(x-m)2+1与x数的交点为A,B(B在A的右边),与y轴的交点为C,顶点为D.(1)当m=1时,判断△ABD的形状,并说明理由;(2)当点B在x轴的正半轴上,点C在y轴的负半轴上时,是
题目详情
已知抛物线y=-(x-m)2+1与x数的交点为A,B(B在A的右边),与y轴的交点为C,顶点为D.
(1)当m=1时,判断△ABD的形状,并说明理由;
(2)当点B在x轴的正半轴上,点C在y轴的负半轴上时,是否存在某个m值,使得△BOC为等腰三角形?若存在,求出m的值;若不存在,请说明理由.
(1)当m=1时,判断△ABD的形状,并说明理由;
(2)当点B在x轴的正半轴上,点C在y轴的负半轴上时,是否存在某个m值,使得△BOC为等腰三角形?若存在,求出m的值;若不存在,请说明理由.
▼优质解答
答案和解析
(1)将m=1代入y=-(x-m)2+1,
得y=-(x-1)2+1,即y=-x2+2x,
顶点D(1,1).
令y=0,得-x2+2x=0,解得x=0或2,
所以A(0,0),B(2,0),
∵AD2=(1-0)2+(1-0)2=2,BD2=(1-2)2+(1-0)2=2,AB=2,
∴AD=BD=
,AD2+BD2=AB2=4,
∴△ABD是等腰直角三角形;
(2)存在某个m的值,使得△BOC为等腰三角形.
∵当y=0时,-(x-m)2+1=0,即(x-m)2=1,
∴x1=m-1,x2=m+1.
∵点B在点A的右边,
∴A(m-1,0),B(m+1,0).
∵点B在x轴的正半轴上,
∴OB=m+1.
∵当x=0时,y=1-m2,点C在y轴的负半轴上,
∴OC=m2-1.
当△BOC为等腰三角形时,OB=OC,
∴m2-1=m+1,
整理得m2-m-2=0,
解得m=2或m=-1(因为对称轴在y轴的右侧,m>0,所以不合要求,舍去),
故存在△BOC为等腰三角形的情形,此时m=2.
得y=-(x-1)2+1,即y=-x2+2x,
顶点D(1,1).
令y=0,得-x2+2x=0,解得x=0或2,
所以A(0,0),B(2,0),
∵AD2=(1-0)2+(1-0)2=2,BD2=(1-2)2+(1-0)2=2,AB=2,
∴AD=BD=
2 |
∴△ABD是等腰直角三角形;

∵当y=0时,-(x-m)2+1=0,即(x-m)2=1,
∴x1=m-1,x2=m+1.
∵点B在点A的右边,
∴A(m-1,0),B(m+1,0).
∵点B在x轴的正半轴上,
∴OB=m+1.
∵当x=0时,y=1-m2,点C在y轴的负半轴上,
∴OC=m2-1.
当△BOC为等腰三角形时,OB=OC,
∴m2-1=m+1,
整理得m2-m-2=0,
解得m=2或m=-1(因为对称轴在y轴的右侧,m>0,所以不合要求,舍去),
故存在△BOC为等腰三角形的情形,此时m=2.
看了 已知抛物线y=-(x-m)2...的网友还看了以下:
初一下册数学题目1、小明和小华为争当班级足球队的守门员,设计了抛掷一枚骰子的游戏.规定为:抛出的点 2020-05-16 …
已知抛物线y=-x+ax+1/2与直线y=2x(1)求证:抛物线与直线相交;(2)当抛物线的顶点在 2020-05-20 …
已知抛物线y=1/2x²-mx+2m-7/2(1)试说明:无论m为何实数,该抛物线与x轴总有两个不 2020-06-16 …
已知抛物线y=-(x-m)2+1与x数的交点为A,B(B在A的右边),与y轴的交点为C,顶点为D. 2020-06-29 …
已知抛物线y=-(x-m)2+1与x数的交点为A,B(B在A的右边),与y轴的交点为C,顶点为D. 2020-07-10 …
已知抛物线y=-(x-m)2+1与x数的交点为A,B(B在A的右边),与y轴的交点为C,顶点为D. 2020-07-20 …
已知抛物线经过点A(2,-2)与点B(-1,-8)在两种情况下,分别求出抛物线的函数关系式(1)当 2020-07-29 …
新定义:如果二次函数y=ax2+bx+c(a≠0)的图象经过点(-1,0),那么称此二次函数图象为 2020-07-31 …
抛物线y=ax²-2x+c必经过(-1,2)(1,当抛物线y=ax²+bx+c经过(-1,2)(1 2020-07-31 …
已知抛物线y=3ax^2+2bx+c1.若a=b=1,且—1<x<1时抛物线与x轴有且只有一个公共点 2020-11-01 …