早教吧作业答案频道 -->数学-->
已知抛物线y=-(x-m)2+1与x数的交点为A,B(B在A的右边),与y轴的交点为C,顶点为D.(1)当m=1时,判断△ABD的形状,并说明理由;(2)当点B在x轴的正半轴上,点C在y轴的负半轴上时,是
题目详情
已知抛物线y=-(x-m)2+1与x数的交点为A,B(B在A的右边),与y轴的交点为C,顶点为D.
(1)当m=1时,判断△ABD的形状,并说明理由;
(2)当点B在x轴的正半轴上,点C在y轴的负半轴上时,是否存在某个m值,使得△BOC为等腰三角形?若存在,求出m的值;若不存在,请说明理由.
(1)当m=1时,判断△ABD的形状,并说明理由;
(2)当点B在x轴的正半轴上,点C在y轴的负半轴上时,是否存在某个m值,使得△BOC为等腰三角形?若存在,求出m的值;若不存在,请说明理由.
▼优质解答
答案和解析
(1)将m=1代入y=-(x-m)2+1,
得y=-(x-1)2+1,即y=-x2+2x,
顶点D(1,1).
令y=0,得-x2+2x=0,解得x=0或2,
所以A(0,0),B(2,0),
∵AD2=(1-0)2+(1-0)2=2,BD2=(1-2)2+(1-0)2=2,AB=2,
∴AD=BD=
,AD2+BD2=AB2=4,
∴△ABD是等腰直角三角形;
(2)存在某个m的值,使得△BOC为等腰三角形.
∵当y=0时,-(x-m)2+1=0,即(x-m)2=1,
∴x1=m-1,x2=m+1.
∵点B在点A的右边,
∴A(m-1,0),B(m+1,0).
∵点B在x轴的正半轴上,
∴OB=m+1.
∵当x=0时,y=1-m2,点C在y轴的负半轴上,
∴OC=m2-1.
当△BOC为等腰三角形时,OB=OC,
∴m2-1=m+1,
整理得m2-m-2=0,
解得m=2或m=-1(因为对称轴在y轴的右侧,m>0,所以不合要求,舍去),
故存在△BOC为等腰三角形的情形,此时m=2.
得y=-(x-1)2+1,即y=-x2+2x,
顶点D(1,1).
令y=0,得-x2+2x=0,解得x=0或2,
所以A(0,0),B(2,0),
∵AD2=(1-0)2+(1-0)2=2,BD2=(1-2)2+(1-0)2=2,AB=2,
∴AD=BD=
2 |
∴△ABD是等腰直角三角形;

∵当y=0时,-(x-m)2+1=0,即(x-m)2=1,
∴x1=m-1,x2=m+1.
∵点B在点A的右边,
∴A(m-1,0),B(m+1,0).
∵点B在x轴的正半轴上,
∴OB=m+1.
∵当x=0时,y=1-m2,点C在y轴的负半轴上,
∴OC=m2-1.
当△BOC为等腰三角形时,OB=OC,
∴m2-1=m+1,
整理得m2-m-2=0,
解得m=2或m=-1(因为对称轴在y轴的右侧,m>0,所以不合要求,舍去),
故存在△BOC为等腰三角形的情形,此时m=2.
看了 已知抛物线y=-(x-m)2...的网友还看了以下:
已知分数a/8,当a为﹙﹚时这个分数值为0;当a为﹙﹚时,这个分数值为1;当a为﹙﹚时,是这个分数 2020-05-14 …
数119很奇特:当被2除时,余数为1;当被3除时,余数为2;当被4除时,余数为3;当被5除时,余数 2020-05-16 …
将一个薄凸透镜与一个薄凹透镜贴合在一起组成复合透镜那么复合透镜焦度A一定为0B一定为正C一定为负D 2020-05-17 …
如图,正方形ABCD边长为1,动点P从A点出发,沿正方形的边按逆时针方向运动,当它的运动路程为20 2020-05-17 …
若当x=2时,函数y=ax^7-bx^5+cx^3+dx+2001的值为1,则当x=-2时,函数值 2020-06-06 …
如图,A、B是⊙O上的两个点,已知P为平面内一点,(P、A、B三点不在同一条直线上).(1)若点P 2020-06-13 …
数列Xn当N为奇数的时候为1/n,当N为偶数时候Xn为(N^2+根号N)/N.则当n趋于无穷大Xn 2020-07-31 …
已知定义在R上的偶函数f(x)的最小值为1,且当x≥0时,f(x)=ex+a,其中e为自然对数的底 2020-08-02 …
已知△ABC的面积为1,D,E分别是AB,AC边上的点,CD,BE交于F点,过点F作FM‖AB,FN 2020-11-03 …
在LC电路振荡时下列说法中正确的是A当电容器放电完毕时线圈中的电动势为零B当电容器开始放电时线圈中的 2020-11-27 …