早教吧作业答案频道 -->数学-->
如图,a,b,c在同一直线上,且△ABD,△BCE都是等边三角形,AE交BD于F.CD交BE于G,求证见问题补充求证:(1)AE=CD(2)BF=BG;(3)FG∥AC(4)OB平分∠AOC
题目详情
求证:(1)AE=CD(2)BF=BG;(3)FG∥AC(4)OB平分∠AOC


▼优质解答
答案和解析
证明:(1)∵△ABD、△BCE为等边三角形
∴AB=BD,BC=BE
∠1=∠2=60°,∠3=180°-∠1-∠2=60°
∴∠ABE=∠DBC=120°
∴△ABE≌△DBC(SAS)
∴AE=CD
(2)∵△ABE≌△DBC
∴∠BEF=∠BCG
∵∠3=∠2=60°,BE=BC
∴△BEF≌△BCG(ASA)
∴BF=BG
(3)∵BF=BG,∠3=60°
∴△BFG为等边三角形
∴∠1=∠2=∠3=∠4=∠5=60°
∴FG∥AC
(4)作BP⊥AE,BQ⊥CD
∵△ABE≌△DBC
∴S△ABE=S△DBC
即AE×BP/2=CD×BQ/2
∵AE=CD
∴BP=BQ
∴OB平分∠AOC(到角的两边距离相等的点在角的平分线上)
∴AB=BD,BC=BE
∠1=∠2=60°,∠3=180°-∠1-∠2=60°
∴∠ABE=∠DBC=120°
∴△ABE≌△DBC(SAS)
∴AE=CD
(2)∵△ABE≌△DBC
∴∠BEF=∠BCG
∵∠3=∠2=60°,BE=BC
∴△BEF≌△BCG(ASA)
∴BF=BG
(3)∵BF=BG,∠3=60°
∴△BFG为等边三角形
∴∠1=∠2=∠3=∠4=∠5=60°
∴FG∥AC
(4)作BP⊥AE,BQ⊥CD
∵△ABE≌△DBC
∴S△ABE=S△DBC
即AE×BP/2=CD×BQ/2
∵AE=CD
∴BP=BQ
∴OB平分∠AOC(到角的两边距离相等的点在角的平分线上)
看了如图,a,b,c在同一直线上,...的网友还看了以下:
设lim(x->X)f(x)=∞,且x->X时,g(x)的主部是f(x)证明lim(x->X)g( 2020-05-12 …
问几个二次函数的题目1.已知二次函数f(x)=ax^2+bx+c和一次函数g(x)=-bx,其中a 2020-05-13 …
设f''(x)在R上连续,且f(0)=0,g(x)=f(x)/x(x不为0时),g(x)=f'(0 2020-05-14 …
已知函数f(x)=(lnx)/x的图像为曲线C,函数g(x)=1/2*a*x+b的图像为直线l.( 2020-06-04 …
一道大一数学题,急等!设f(x)有二阶连续导数,且f(0)=0,试证函数g(x)可导,且g'(x) 2020-06-06 …
设G是n介有限循环群且m整除n求证:G一定有m元子群设G是n介有限循环群且m整除n求证:G一定有m 2020-07-06 …
已知二次函数f(x)=ax^2+bx+c和一次函数g(x)=-bx其中a,b,c∈R且满足a>b> 2020-07-09 …
你给找找答案1、证明:若G不是交换群而其阶大于2,则在G中存在适合条件ab=ba,且不是单位元的元 2020-07-10 …
求解一题证明题!高数设f(x)与g(x)在[a,b]上连续,在(a,b)上可导,f(a)=f(b) 2020-08-01 …
学数学的烦恼设G是一个2n阶有限交换群,其中n是一个奇数.证明:G有且只有一个2阶元素.证:依题意, 2020-11-03 …