早教吧作业答案频道 -->其他-->
如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,
题目详情
如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.
(1)试判断直线AB与直线CD的位置关系,并说明理由;
(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;
(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.

(1)试判断直线AB与直线CD的位置关系,并说明理由;
(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;
(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.

▼优质解答
答案和解析
(1)如图1,∵∠1与∠2互补,
∴∠1+∠2=180°.
又∵∠1=∠AEF,∠2=∠CFE,
∴∠AEF+∠CFE=180°,
∴AB∥CD;
(2)如图2,由(1)知,AB∥CD,
∴∠BEF+∠EFD=180°.
又∵∠BEF与∠EFD的角平分线交于点P,
∴∠FEP+∠EFP=
(∠BEF+∠EFD)=90°,
∴∠EPF=90°,即EG⊥PF.
∵GH⊥EG,
∴PF∥GH;
(3)∠HPQ的大小不发生变化,理由如下:
如图3,∵∠1=∠2,
∴∠3=2∠2.
又∵GH⊥EG,
∴∠4=90°-∠3=90°-2∠2.
∴∠EPK=180°-∠4=90°+2∠2.
∵PQ平分∠EPK,
∴∠QPK=
∠EPK=45°+∠2.
∴∠HPQ=∠QPK-∠2=45°,
∴∠HPQ的大小不发生变化,一直是45°.
(1)如图1,∵∠1与∠2互补,∴∠1+∠2=180°.
又∵∠1=∠AEF,∠2=∠CFE,
∴∠AEF+∠CFE=180°,
∴AB∥CD;
(2)如图2,由(1)知,AB∥CD,
∴∠BEF+∠EFD=180°.
又∵∠BEF与∠EFD的角平分线交于点P,
∴∠FEP+∠EFP=
| 1 |
| 2 |
∴∠EPF=90°,即EG⊥PF.
∵GH⊥EG,
∴PF∥GH;
(3)∠HPQ的大小不发生变化,理由如下:
如图3,∵∠1=∠2,
∴∠3=2∠2.
又∵GH⊥EG,
∴∠4=90°-∠3=90°-2∠2.
∴∠EPK=180°-∠4=90°+2∠2.
∵PQ平分∠EPK,
∴∠QPK=
| 1 |
| 2 |
∴∠HPQ=∠QPK-∠2=45°,
∴∠HPQ的大小不发生变化,一直是45°.
看了 如图1,直线MN与直线AB、...的网友还看了以下:
如图,已知平行四边形ABCD,点P在对角线BD上,EF‖BC,GH‖AB,点E,H,F,G分别是在 2020-05-15 …
直角三角形中,一条直角边为a一条直角边为b斜边为c,斜边上的高为h,求证a平方分之一加b平方分之一 2020-05-22 …
一个直角梯形的上、下底和高的长度分别是a、b和h,如果a*h=17,b*h=25,那么这个直角梯形 2020-06-07 …
甲醛(H2C=O)在Ni催化作用下加氢可得甲醇(CH3OH),以下说法中不正确的是()A.甲醇分子 2020-07-07 …
您好,请问您知道以下内容出自那篇文章吗?水分子结构中的O—H键长和H—O—H键角的科学研究并未得到 2020-07-17 …
已知一角和这角的平分线及这角对边上的高,求作三角形.已知:线段m、h和∠α(图3—137).求作: 2020-07-18 …
AB是底部B不可到达的一个建筑物,A为建筑物的最高点,H、G、B三点在同一条水平直线上.在H、G两 2020-07-27 …
如图所示,RT三角形ABC,∠C=90°,∠A,∠B,∠C对应的边长为a,b,c,斜边上的高CD长 2020-07-30 …
Rt△ABC中,∠C为直角,CD为斜边上的高h,角A、B、C的对边分别为a,b,c,与Rt△ABC 2020-08-02 …
按要求回答下列问题:(1)气态SeO3分子的立体构型为,SO32-离子的立体构型为;(2)H+可与N 2020-12-21 …