早教吧作业答案频道 -->数学-->
三边长分别为2n2+2n,2n+1,2n2+2n+1(n>0)的三角形是不是直角三角形?为什么?
题目详情
三边长分别为2n2+2n,2n+1,2n2+2n+1(n>0)的三角形是不是直角三角形?为什么?
▼优质解答
答案和解析
证明:∵三边长为2n2+2n,2n+1,2n2+2n+1(n>0),
∴(2n2+2n)2=4n4+8n3+4n2,
(2n+1)2=4n2+4n+1,
(2n2+2n+1)2=4n4+4n2+1+8n3+4n2+4n=4n4+8n3+8n2+4n+1,
∴(2n2+2n)2+(2n+1)2=4n4+8n3+8n2+4n+1,
∴(2n2+2n)2+(2n+1)2=(2n2+2n+1)2,
故三边长为2n2+2n,2n+1,2n2+2n+1(n>0)的三角形是直角三角形.
∴(2n2+2n)2=4n4+8n3+4n2,
(2n+1)2=4n2+4n+1,
(2n2+2n+1)2=4n4+4n2+1+8n3+4n2+4n=4n4+8n3+8n2+4n+1,
∴(2n2+2n)2+(2n+1)2=4n4+8n3+8n2+4n+1,
∴(2n2+2n)2+(2n+1)2=(2n2+2n+1)2,
故三边长为2n2+2n,2n+1,2n2+2n+1(n>0)的三角形是直角三角形.
看了 三边长分别为2n2+2n,2...的网友还看了以下:
定义:把一个n边形(n>3)的内角及外角从小到大分别排序后,若按这个顺序得到的n个内角的比与n个外 2020-05-14 …
在△ABC中,BC=m²-n²,AC=2mn,AB=m²+n²【m>n>0】,△ABC是直角三角形 2020-05-16 …
直线坐标轴上,y轴上给两点A(0,m),B(0,n)(m>n>0),试在x轴的正半轴上找一点C,使 2020-05-20 …
关于数列{xn}的极限是a的定义的理解1、对于任意给定的ε>0,存在N属于N+,当n>N时,有无穷 2020-07-11 …
平面上有n(n>3)个点任意3个点不在同一条直线上,过任意3个点做三角形,一共能做出多少个三角形? 2020-07-14 …
如图,∠埃尔法+∠贝塔是三角形ABC外交(1)∠埃尔法+∠贝塔能等于180°吗?为什么(2)设∠埃 2020-07-24 …
在平面直角坐标系xOy中,A(0,m)B(0,n)m>n>0.P为x轴正半轴上的一个动点,当∠AP 2020-07-30 …
直线AB过点A(m,0)、B(0,n)(m>0,n>0),反比例函数y=p/x的图像与AB交于C、 2020-07-30 …
初一数学题已知m、n均为非零有理数,下列结论正确的是A若m不等于n,则m的平方不等于n的平方B若m的 2020-12-17 …
孩子不懂,只好求助朋友们啦,先谢谢^O^二次函数y=ax²+bx+c的图象如图一所示,若M=4a+2 2021-01-22 …