早教吧作业答案频道 -->数学-->
在平行四边形ABCD中,∠BAD=32度,分别以BC,CD为边像外做△BCE和△DCF,使BE=BC,DF=DC,∠EBC=∠CDF延长AB交边EC于点H,点H在E,C两点之间,连结AE,AF.(1)求证:△ABE≌△FDA(2)当AE⊥AF时,求∠EBH的度数
题目详情
在平行四边形ABCD中,∠BAD=32度,分别以BC,CD为边像外做△BCE和△DCF,使BE=BC,DF=DC,∠EBC=∠CDF延长AB交边
EC于点H,点H在E,C两点之间,连结AE,AF.
(1)求证:△ABE≌△FDA
(2)当AE⊥AF时,求∠EBH的度数
EC于点H,点H在E,C两点之间,连结AE,AF.
(1)求证:△ABE≌△FDA
(2)当AE⊥AF时,求∠EBH的度数
▼优质解答
答案和解析
证明:(1)在平行四边形ABCD中,AB=DC,
又∵DF=DC,
∴AB=DF.
同理EB=AD.
在平行四边形ABCD中,∠ABC=∠ADC,
又∵∠EBC=∠CDF,
∴∠ABE=∠ADF.
∴△ABE≌△FDA.
(2)∵△ABE≌△FDA,
∴∠AEB=∠DAF.
∵∠EBH=∠AEB+∠EAB,
∴∠EBH=∠DAF+∠EAB.
∵AE⊥AF,
∴∠EAF=90°.
∵∠BAD=32°,
∴∠DAF+∠EAB=90°-32°=58°.
∴∠EBH=58°.
又∵DF=DC,
∴AB=DF.
同理EB=AD.
在平行四边形ABCD中,∠ABC=∠ADC,
又∵∠EBC=∠CDF,
∴∠ABE=∠ADF.
∴△ABE≌△FDA.
(2)∵△ABE≌△FDA,
∴∠AEB=∠DAF.
∵∠EBH=∠AEB+∠EAB,
∴∠EBH=∠DAF+∠EAB.
∵AE⊥AF,
∴∠EAF=90°.
∵∠BAD=32°,
∴∠DAF+∠EAB=90°-32°=58°.
∴∠EBH=58°.
看了 在平行四边形ABCD中,∠B...的网友还看了以下:
在直角坐标系中有点A(a,b),B(a,c),C(-a,-b),D(-a,-c)(a≠0,b≠c) 2020-04-27 …
线性代数问题证明:|1111||abcd||a²b²c²d²|=(a-b)(a-c)(a-d)(b 2020-06-12 …
如图所示为一个平面四边形ABCD的直观图,A′D′∥B′C′,且A′D′=B′C′,则它的实际形状 2020-06-27 …
关于复数的问题求证:设复平面上四点复数为a,b,c,d.且(a-b)(c-d)与(a-d)(b-c 2020-07-05 …
在化合物A、B、C中,B为酸,C是不溶于酸8盐,她们有如四关系:A+X=B+C↓.问:(1)若X是 2020-07-13 …
已知向量OA=a,向量OB=b,向量OC=c,向量OD=d,且四边形ABCD为平行四边形,则()A 2020-07-24 …
四.求证:a^2(x-b)(x-c)/(a-b)(a-c)+b^2(x-c)(x-a)/(b-c) 2020-07-29 …
四阶行列式,好吧这是个证明题,1,1,1,1;a,b,c,d;a²,b²,c²,d²;a^4,b^ 2020-08-01 …
一道因式分解难题,分解因式a^3(b-c)+b^3(c-a)+c^3(a-b).分析这是一个关于a 2020-08-02 …
a,b,c都是非0自然数,a×十二分之十三=十五分之十四×b=c×八分之八,下面排列顺序正确的是() 2020-12-07 …