早教吧作业答案频道 -->数学-->
在平行四边形ABCD中,∠BAD=32度,分别以BC,CD为边像外做△BCE和△DCF,使BE=BC,DF=DC,∠EBC=∠CDF延长AB交边EC于点H,点H在E,C两点之间,连结AE,AF.(1)求证:△ABE≌△FDA(2)当AE⊥AF时,求∠EBH的度数
题目详情
在平行四边形ABCD中,∠BAD=32度,分别以BC,CD为边像外做△BCE和△DCF,使BE=BC,DF=DC,∠EBC=∠CDF延长AB交边
EC于点H,点H在E,C两点之间,连结AE,AF.
(1)求证:△ABE≌△FDA
(2)当AE⊥AF时,求∠EBH的度数
EC于点H,点H在E,C两点之间,连结AE,AF.
(1)求证:△ABE≌△FDA
(2)当AE⊥AF时,求∠EBH的度数
▼优质解答
答案和解析
证明:(1)在平行四边形ABCD中,AB=DC,
又∵DF=DC,
∴AB=DF.
同理EB=AD.
在平行四边形ABCD中,∠ABC=∠ADC,
又∵∠EBC=∠CDF,
∴∠ABE=∠ADF.
∴△ABE≌△FDA.
(2)∵△ABE≌△FDA,
∴∠AEB=∠DAF.
∵∠EBH=∠AEB+∠EAB,
∴∠EBH=∠DAF+∠EAB.
∵AE⊥AF,
∴∠EAF=90°.
∵∠BAD=32°,
∴∠DAF+∠EAB=90°-32°=58°.
∴∠EBH=58°.
又∵DF=DC,
∴AB=DF.
同理EB=AD.
在平行四边形ABCD中,∠ABC=∠ADC,
又∵∠EBC=∠CDF,
∴∠ABE=∠ADF.
∴△ABE≌△FDA.
(2)∵△ABE≌△FDA,
∴∠AEB=∠DAF.
∵∠EBH=∠AEB+∠EAB,
∴∠EBH=∠DAF+∠EAB.
∵AE⊥AF,
∴∠EAF=90°.
∵∠BAD=32°,
∴∠DAF+∠EAB=90°-32°=58°.
∴∠EBH=58°.
看了 在平行四边形ABCD中,∠B...的网友还看了以下:
提示:D-C=0A-B,A-D,D-C,D-E,E-F=1A-D,C-F=2A-B,D-E,E-F 2020-04-06 …
如图,在矩形ABCD中,点O是边AD上的中点,点E是边BC上的一个动点,延长EO到F,使得OE=O 2020-04-09 …
在等边三角形ABC中,D为线段BC上的动点,连接AD,在角ADC内作角ADE等于60度,交AC边于 2020-05-13 …
main(){unionEXAMPLE{struct{intx,y;}in;inta,b;}e;e 2020-06-12 …
如图在正方形ABCD中点E在边AB上再点E作FG垂直于DEFG与边BC相交于点F与边DA的延长线相 2020-06-12 …
用以下英文宇母填在上a,a,a,a,a,a,b,e,e,d,e,e,e,e,e,e,f,g,g用以 2020-06-24 …
d/dx(e^y+xy-e)=e^ydy/dx+y+xdy/dx,这是教科书上的等式,对等式左边x 2020-07-19 …
如图,在三角形ABC中,AB=AC,D是边BC延长线上一点,E是边AC上一点,如果角EBC=角D, 2020-08-01 …
a、b和D、E打架,致使a和E轻微伤。现a先起诉E、F,而E另立案起诉a、b。起诉与反诉的问题。a. 2021-01-13 …
直线y=x-6与x,y轴分别交于点A,B,E从B出发,以每秒一个单位的速度沿线段BO向O移动(E与B 2021-01-16 …