早教吧作业答案频道 -->数学-->
已知:如图(1),在平行四边形ABCD中,点E、F分别在BC、CD上,且AE=AF,∠AEC=∠AFC.(1)求证:四边形ABCD是菱形;(2)如图(2),若AD=AF,延长AE、DC交于点G,求证:AF2=AG•DF;(3)在第(
题目详情
已知:如图(1),在平行四边形ABCD中,点E、F分别在BC、CD上,且AE=AF,∠AEC=∠AFC.
(1)求证:四边形ABCD是菱形;
(2)如图(2),若AD=AF,延长AE、DC交于点G,求证:AF2=AG•DF;
(3)在第(2)小题的条件下,连接BD,交AG于点H,若HE=4,EG=12,求AH的长.

(1)求证:四边形ABCD是菱形;
(2)如图(2),若AD=AF,延长AE、DC交于点G,求证:AF2=AG•DF;
(3)在第(2)小题的条件下,连接BD,交AG于点H,若HE=4,EG=12,求AH的长.

▼优质解答
答案和解析
(1)证明:如图1,∵四边形ABCD是平行四边形,
∴∠B=∠D.
∵∠AEC=∠AFC,∠AEC+∠AEB=∠AFC+∠AFD=180°,
∴∠AEB=∠AFD.
在△AEB和△AFD中,
,
∴△AEB≌△AFD(AAS)
∴AB=AD,
∴平行四边形ABCD是菱形;
(2)由(1)知,△AEB≌△AFD,则∠BAE=∠DAF.
如图2,∵四边形ABCD是平行四边形,
∴AB∥DG,
∴∠BAE=∠G,
∴∠G=∠DAF.
又∵∠ADF=∠GDA,
∴△GAD∽△AFD,
∴DA:DF=DG:DA,
∴DA2=DG•DF.
∵DG:DA=AG:FA,且AD=AF,
∴DG=AG.
又∵AD=AF,
∴AF2=AG•DF;
(3)如图2,在菱形ABCD中,∵AB∥DC,AD∥BC,
∴AH:HG=BH:HD,BH:HD=EH:AH,
∴AH:HG=EH:AH.
∵HE=4,EG=12,
∴AH:16=4:AH,
∴AH=8.
(1)证明:如图1,∵四边形ABCD是平行四边形,∴∠B=∠D.
∵∠AEC=∠AFC,∠AEC+∠AEB=∠AFC+∠AFD=180°,
∴∠AEB=∠AFD.
在△AEB和△AFD中,
|
∴△AEB≌△AFD(AAS)
∴AB=AD,
∴平行四边形ABCD是菱形;
(2)由(1)知,△AEB≌△AFD,则∠BAE=∠DAF.
如图2,∵四边形ABCD是平行四边形,
∴AB∥DG,
∴∠BAE=∠G,
∴∠G=∠DAF.
又∵∠ADF=∠GDA,
∴△GAD∽△AFD,
∴DA:DF=DG:DA,
∴DA2=DG•DF.
∵DG:DA=AG:FA,且AD=AF,
∴DG=AG.
又∵AD=AF,
∴AF2=AG•DF;
(3)如图2,在菱形ABCD中,∵AB∥DC,AD∥BC,
∴AH:HG=BH:HD,BH:HD=EH:AH,
∴AH:HG=EH:AH.
∵HE=4,EG=12,
∴AH:16=4:AH,
∴AH=8.
看了 已知:如图(1),在平行四边...的网友还看了以下:
1/a+1/b+1/c=1/d+1/e+1/f+1/g=1(a,b,c,d,e,f,g均为自然数) 2020-05-13 …
已知整数a,b,c,d满足abcd=6(a-1)(b-1)(c-1)(d-1)(1)是否存在满足上 2020-06-03 …
求解a(1/b+1/c+1/d)+b(1/a+1/c+1/d)+c(1/b+1/a+1/d)+d( 2020-06-12 …
两个四元方程,找所有解找到所有无序组合(a,b,c,d),其中他们都是实数,符合这两个方程:a+b 2020-06-19 …
如果a,b,c,d是不为0的整数满足1/a+1/b=1/c1/b+1/c=1/d1/c+1/d=1 2020-07-09 …
1)直线X-2Y-2K=0与2X-Y-K=0上,则K的值为()(A)1(B)2(C)-1(D)02 2020-07-22 …
已知在数列{an}中,a1=3,an+1=can+d(c,d是常数)(1)当c=1,d=-1时求数 2020-07-30 …
有4个正整数a,b,c,d他们满足1/a+1/b+1/c+1/d=1,a小于b小于c小于d那么a+b 2020-11-24 …
数学题请教,并教解题思路有四个正整数a、b、c、d.它们满足1/a+1/b+1/c+1/d=1,a< 2020-12-12 …
如果a、b、c、d都是不为零的整数,且1/a+1/b=1/c,1/b+1/c=1/d,1/c+1/d 2021-02-01 …