早教吧作业答案频道 -->其他-->
(2014•绵阳)如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且满足BC=FC,过点C作⊙O的切线交AB的延长线于D点,交AF的延长线于E点.(1)求证:AE⊥DE;(2)若tan∠CBA=3,AE=3,求AF
题目详情

![]() |
BC |
![]() |
FC |
(1)求证:AE⊥DE;
(2)若tan∠CBA=
3 |
▼优质解答
答案和解析
(1)证明:连接OC,
∵OC=OA,
∴∠BAC=∠OCA,
∵
=
,
∴∠BAC=∠EAC,
∴∠EAC=∠OCA,
∴OC∥AE,
∵DE切⊙O于点C,
∴OC⊥DE,
∴AE⊥DE;
(2)∵AB是⊙O的直径,
∴△ABC是直角三角形,
∵tan∠CBA=
,
∴∠CBA=60°,
∴∠BAC=∠EAC=30°,
∵△AEC为直角三角形,AE=3,
∴AC=2
,
连接OF,
∵OF=OA,∠OAF=∠BAC+∠EAC=60°,
∴△OAF为等边三角形,
∴AF=OA=
AB,
在Rt△ACB中,AC=2
,tan∠CBA=
,
∴BC=2,
∴AB=4,
∴AF=2.

∵OC=OA,
∴∠BAC=∠OCA,
∵
![]() |
BC |
![]() |
FC |
∴∠BAC=∠EAC,
∴∠EAC=∠OCA,
∴OC∥AE,
∵DE切⊙O于点C,
∴OC⊥DE,
∴AE⊥DE;
(2)∵AB是⊙O的直径,
∴△ABC是直角三角形,
∵tan∠CBA=
3 |
∴∠CBA=60°,
∴∠BAC=∠EAC=30°,
∵△AEC为直角三角形,AE=3,
∴AC=2
3 |
连接OF,
∵OF=OA,∠OAF=∠BAC+∠EAC=60°,
∴△OAF为等边三角形,
∴AF=OA=
1 |
2 |
在Rt△ACB中,AC=2
3 |
3 |
∴BC=2,
∴AB=4,
∴AF=2.
看了 (2014•绵阳)如图,已知...的网友还看了以下:
已知数列{an}的前n项和为Sn,点(n,Sn/n)在直线y=1/2x+11/2上,数列{bn}满足 2020-03-30 …
点PM(M,N)满足2M+N=0,点AM(M,B)满足2M+B=1(1)请写出点P0,P1,P2, 2020-05-17 …
设数列an的前n项和为sn,点P(Sn,an)在直线(3-m)x+2my-m-3=0上,m属于N* 2020-06-05 …
已知,在平面直角坐标系中,点A(0,m),点B(n,0),m、n满足(m-3)2=-n−4;(1) 2020-06-14 …
设a、b∈N*,满足a+b=60,且(a,b)+[a,b]=84,求a和b要求详解, 2020-07-07 …
高中数列题(说明:"[]"中内容表示下标)以数列{a[n]}的任意相邻两项为坐标的点P[n](a[ 2020-07-29 …
已知数轴上有M和N两点.(1)若点M与原点O的距离为3,点N与原点O的距离为4,求M、N两点之间的 2020-07-30 …
自点M(1,0)引直线交椭圆x^2/4+y^2=1于A,B两点,直线l:x=4与x轴交于点N设点A 2020-08-01 …
已知抛物线C:y2=4x的焦点F,过F的直线l与C相交于A,B两点,若AB的垂直平分线l.已知抛物 2020-08-03 …
如图1,在平面直角坐标系中,点A,B的坐标分别为A(m,0),B(n,0)且m、n满足|m+2|+ 2020-08-03 …