早教吧作业答案频道 -->数学-->
设数列{a}的前n项和为Sn,已知a1=a,an+1=Sn+3n次方设数列an的前n项和为Sn,已知A1=a,An+1=Sn+3的n次方,n属于正整数.设bn=Sn-3的n次方,求数列bn的通项公式,若An+1大于等于an,n属于正整数,求a的取值范
题目详情
设数列{a}的前n项和为Sn,已知a1=a,an+1=Sn+3n次方
设数列an的前n项和为Sn,已知A1=a, An+1=Sn+3的n 次方,n 属于正整数.设bn= Sn-3的n次方,求数列bn的通项公式,若An+1大于等于an,n 属于正整数,求a的取值范围
设数列an的前n项和为Sn,已知A1=a, An+1=Sn+3的n 次方,n 属于正整数.设bn= Sn-3的n次方,求数列bn的通项公式,若An+1大于等于an,n 属于正整数,求a的取值范围
▼优质解答
答案和解析
1:a(n+1)=S(n+1)-Sn ,得S(n+1)-Sn=Sn+3^n ,所以S(n+1)=2Sn+3^n ,有S(n+1)-3*3^n=2Sn-2*3^n,所以S(n+1)-3^(n+1)=2(Sn-3^n) 得b(n+1)=2bn
又因S1=a1=a,b1=a-3 ,得bn为以a-3为首项,2为公比的等比数列 所以bn=(a-3)*2^(n-1)
2:a(n+1)=Sn+3^n=bn+2*3^n
a(n+1)-an
=bn+2*3^n-[b(n-1)+2*3^(n-1)]
=bn-b(n-1)+2[3^n-3^(n-1)]
=(a-3)*[2^(n-1)-2^(n-2)]+2[3^n-3^(n-1)]
=(a-3)*2^(n-2)+4*3^(n-1)>=0
a-3>=-4*3^(n-1)/2^(n-2)
=-12*(3/2)^(n-2)
a>=3-12*(3/2)^(n-2)
因为n-1>=1,所以n最小为2
(3/2)^(n-2)最小=(3/2)^(2-2)=1
3-12*(3/2)^(n-2)最大=3-12*1=-9
a>=-9
又因S1=a1=a,b1=a-3 ,得bn为以a-3为首项,2为公比的等比数列 所以bn=(a-3)*2^(n-1)
2:a(n+1)=Sn+3^n=bn+2*3^n
a(n+1)-an
=bn+2*3^n-[b(n-1)+2*3^(n-1)]
=bn-b(n-1)+2[3^n-3^(n-1)]
=(a-3)*[2^(n-1)-2^(n-2)]+2[3^n-3^(n-1)]
=(a-3)*2^(n-2)+4*3^(n-1)>=0
a-3>=-4*3^(n-1)/2^(n-2)
=-12*(3/2)^(n-2)
a>=3-12*(3/2)^(n-2)
因为n-1>=1,所以n最小为2
(3/2)^(n-2)最小=(3/2)^(2-2)=1
3-12*(3/2)^(n-2)最大=3-12*1=-9
a>=-9
看了 设数列{a}的前n项和为Sn...的网友还看了以下:
1.a≠0,b≠0,则a/|a|+b/|b|的不同取值的个数为()A.3B.2C.1D.02.若|x 2020-03-31 …
基本不等式超费解130已知a>b>0,求a2+1/(a*b)+1/[a*(a-b)]的最小值.a2 2020-05-13 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
数列a[n+1]=k+(2k+1)a[n]+(k(k+1)a[n]a[n+1])^1/2 已知a1 2020-05-16 …
如何用MATLAB构造满足某条件的N*(N-1)的列满秩矩阵I(n)=(1,.,1)是个1*n的向 2020-06-27 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3·5·…(2n-1)(n∈N*)时, 2020-08-03 …
(1)(m+n)(n-m)-n(m+n)(m+n)(2)-27x^2(3x-y)^2-9y(y-3x 2020-11-03 …
第一题:设集合M={2,-2a,a²-3},N={a²+a-4,2a+1,-1},且2∈M∩N,求实 2020-11-03 …
递回关系式的运算公式(数列)以下是推导一个公式"a=a+r(1-p^n)/(1-p)"的过程a=p* 2021-01-13 …