早教吧作业答案频道 -->数学-->
以△ABC的边AB、AC为边分别向三角形外作正方形ABEF和正方形ACGH,过A点作直线分别交BC、FH于D、M求证:(1)若AD⊥BC,则AD平分FH(2)若AD平分BC,则AD⊥FH
题目详情
▼优质解答
答案和解析
思路就是利用中线构造平行四边形
第一问:过F作FP‖AH,交AM的延长线于P,连接PH
∵∠FAB=∠HAC=90°,
∴∠FAH+∠BAC=180°=∠PFA+∠FAH,
∴∠BAC=∠PFA.
又AD⊥BC,∴∠ABD+∠BAD=90°=∠FAM+∠BAD.
∴∠FAP=∠ABD.又AB=AF,
∴ΔABC≌ΔFAP,∴AC=FP.
又AC=AH,∴AH=FP.
∴四边形AHPF为平行四边形.故AD平分FH.
第二问:延长AD至P,使得DP=AD,连接PB、PC,
则ABPC为平行四边形,易证ΔABP≌ΔFAH.
∴∠BAD=∠AFH.
∴∠AFH+∠FAM=∠BAD+∠FAM=180°-∠BAF=90°.
∴AD⊥FH
第一问:过F作FP‖AH,交AM的延长线于P,连接PH
∵∠FAB=∠HAC=90°,
∴∠FAH+∠BAC=180°=∠PFA+∠FAH,
∴∠BAC=∠PFA.
又AD⊥BC,∴∠ABD+∠BAD=90°=∠FAM+∠BAD.
∴∠FAP=∠ABD.又AB=AF,
∴ΔABC≌ΔFAP,∴AC=FP.
又AC=AH,∴AH=FP.
∴四边形AHPF为平行四边形.故AD平分FH.
第二问:延长AD至P,使得DP=AD,连接PB、PC,
则ABPC为平行四边形,易证ΔABP≌ΔFAH.
∴∠BAD=∠AFH.
∴∠AFH+∠FAM=∠BAD+∠FAM=180°-∠BAF=90°.
∴AD⊥FH
看了以△ABC的边AB、AC为边分...的网友还看了以下:
四边形的四条边分别为a,b,c,d,其中a,c为对边,且满足a平方+b平方+c平方=2ab+2cd 2020-05-15 …
当游客登上海岛时,该岛表面形状为三角形,三边A,B,C满足以下关系,3(A平方+B平方+C平方)= 2020-05-16 …
帮我看看几道题↓如下(定有重谢)初2本人绝对诚信,1.在RT三角形中,角A为60度;c+b=21, 2020-06-06 …
问道等腰三角形证明题已知a,b,c为△ABC的三边,且满足a平方c平方-b平方c平方=a四次方-b 2020-06-29 …
诺三角行ABC的三边a,b,c满足(a+b+c)的平方,试说明三角行ABC为等边三角行.打错了~满 2020-06-29 …
急求~~1,在三角形ABC中,a平方+b平方+c平方sinC=2倍根号三乘absinC,判i断三角 2020-07-14 …
若a.b.c是三角形ABC的三边长.a不等于b不等于c.a.b.c满足a平方c平方—b平方c平方= 2020-07-23 …
勾股定理超难的题十级以上再进吧!将直角三角形ABC绕直角顶点C旋转,使点A落在BC边上的A',利用 2020-07-29 …
数学勾股定理,判断对错判断对错,错误的要简述理由①△ABC中,a平方+b平方≠c平方,则△ABC不 2020-08-02 …
快急今天就要以A,B,C和S分别表示三角形的三边和面积,以知A平方+B平方+C平方=4倍根号3S求证 2020-12-10 …