早教吧作业答案频道 -->其他-->
设直线l:y=5x+4是曲线C:f(x)=13x3-x2+2x+m的一条切线,g(x)=ax2+2x-23.(Ⅰ)求切点坐标及m的值;(Ⅱ)当m∈Z时,存在x∈[0,+∞)使f(x)≤g(x)成立,求实数a的取值范围.
题目详情
设直线l:y=5x+4是曲线C:f(x)=
x3-x2+2x+m的一条切线,g(x)=ax2+2x-23.
(Ⅰ)求切点坐标及m的值;
(Ⅱ)当m∈Z时,存在x∈[0,+∞)使f(x)≤g(x)成立,求实数a的取值范围.
| 1 |
| 3 |
(Ⅰ)求切点坐标及m的值;
(Ⅱ)当m∈Z时,存在x∈[0,+∞)使f(x)≤g(x)成立,求实数a的取值范围.
▼优质解答
答案和解析
(Ⅰ)设直线l与曲线C相切于点P(x0,y0),
∵f'(x)=x2-2x+2,∴x02−2x0+2=5,解得x0=-1或x0=3,
当x0=-1时,y0=-1,∵P(-1,-1)在曲线C上,∴m=
,
当x0=3时,y0=19,∵P(3,19)在曲线C上,∴m=13,
∴切点P(-1,-1),m=
,
切点P(3,19),m=13.
(Ⅱ)解法一:∵m∈Z,∴m=13,
设h(x)=f(x)−g(x)=
x3−(1+a)x2+36,
若存在x∈[0,+∞)使f(x)≤g(x)成立,则只要h(x)min≤0,
h'(x)=x2-2(1+a)x=x[x-2(1+a)],
(ⅰ)若1+a≥0即a≥-1,令h'(x)>0,得x>2(1+a)或x<0,
∵x∈[0,+∞),∴h(x)在(2(1+a),+∞)上是增函数,
令h'(x)≤0,解得0≤x≤2(1+a),
∴h(x)在[0,2(1+a)]上是减函数,∴h(x)min=h(2(1+a)),
令h(2(1+a))≤0,解得a≥2,
(ⅱ)若1+a<0即a<-1,令h'(x)>0,解得x<2(1+a)或x>0,
∵x∈[0,+∞),∴h(x)在(0,+∞)上是增函数,∴h(x)min=h(0),
令h(0)≤0,不等式无解,∴a不存在,
综合(ⅰ)(ⅱ)得,实数a的取值范围为[2,+∞).
解法二:由f(x)≤g(x)得ax2≥
x3−x2+36,
(ⅰ)当x≠0时,a≥
x+
−1,设h(x)=
x+
−1
若存在x∈[0,+∞)使f(x)≤g(x)成立,则只要h(x)min≤a,
h′(x)=
−
=
,
令h'(x)≥0解得x≥6,∴h(x)在[6+∞)上是增函数,
令h'(x)<0,解得0<x<6,∴h(x)在(0,6)上是减函数,
∴h(x)min=h(6)=2,∴a≥2,
(ⅱ)当x=0时,不等式ax2≥
x3−x2+36不成立,
∴a不存在,
综合(ⅰ)(ⅱ)得,实数a的取值范围为[2,+∞).
∵f'(x)=x2-2x+2,∴x02−2x0+2=5,解得x0=-1或x0=3,
当x0=-1时,y0=-1,∵P(-1,-1)在曲线C上,∴m=
| 7 |
| 3 |
当x0=3时,y0=19,∵P(3,19)在曲线C上,∴m=13,
∴切点P(-1,-1),m=
| 7 |
| 3 |
切点P(3,19),m=13.
(Ⅱ)解法一:∵m∈Z,∴m=13,
设h(x)=f(x)−g(x)=
| 1 |
| 3 |
若存在x∈[0,+∞)使f(x)≤g(x)成立,则只要h(x)min≤0,
h'(x)=x2-2(1+a)x=x[x-2(1+a)],
(ⅰ)若1+a≥0即a≥-1,令h'(x)>0,得x>2(1+a)或x<0,
∵x∈[0,+∞),∴h(x)在(2(1+a),+∞)上是增函数,
令h'(x)≤0,解得0≤x≤2(1+a),
∴h(x)在[0,2(1+a)]上是减函数,∴h(x)min=h(2(1+a)),
令h(2(1+a))≤0,解得a≥2,
(ⅱ)若1+a<0即a<-1,令h'(x)>0,解得x<2(1+a)或x>0,
∵x∈[0,+∞),∴h(x)在(0,+∞)上是增函数,∴h(x)min=h(0),
令h(0)≤0,不等式无解,∴a不存在,
综合(ⅰ)(ⅱ)得,实数a的取值范围为[2,+∞).
解法二:由f(x)≤g(x)得ax2≥
| 1 |
| 3 |
(ⅰ)当x≠0时,a≥
| 1 |
| 3 |
| 36 |
| x2 |
| 1 |
| 3 |
| 36 |
| x2 |
若存在x∈[0,+∞)使f(x)≤g(x)成立,则只要h(x)min≤a,
h′(x)=
| 1 |
| 3 |
| 72 |
| x3 |
| x3−63 |
| 3x3 |
令h'(x)≥0解得x≥6,∴h(x)在[6+∞)上是增函数,
令h'(x)<0,解得0<x<6,∴h(x)在(0,6)上是减函数,
∴h(x)min=h(6)=2,∴a≥2,
(ⅱ)当x=0时,不等式ax2≥
| 1 |
| 3 |
∴a不存在,
综合(ⅰ)(ⅱ)得,实数a的取值范围为[2,+∞).
看了 设直线l:y=5x+4是曲线...的网友还看了以下:
已知f(x)定义域[-7.7]上的偶函数,且在[0,7]上为单调递减1.求f(x²+1)<(2),求 2020-03-30 …
f(x)=2+√2sin(2x+π/4) 1.求减区间 2.x∈[-π/2,π/2],求f(x)值 2020-06-27 …
点O在直线AB上,∠1=∠2,∠4=3∠3,∠2+∠3=70°(1)设∠3=x°,则∠4=.∠1+ 2020-07-15 …
(1)已知x>0,y>0,4/x+1/y=2,求x+y的最小值(2)已知x>0,y>0,2x+y= 2020-07-15 …
已知圆C:和直线l:kx-y-4k+3=0(1)求证:不论k取何值,直线和圆总相交.(2)求k取何 2020-07-20 …
sinθ根号(2)/2求θ的取值范围sinθ根号(2)/2的范围是(-π∕4+2kπ,π∕4+2k 2020-07-30 …
数字1,2,3,4的四个大小,形状完全相同的球,现从中有放回地随机抽取二个球,抽取的球的标号分别是a 2020-11-07 …
1.当x取一切实数时,式子│x-2│-│x+4│取得的最大值是多少?最小值是多少?大:6.小:-62 2020-11-07 …
在等差数列{an}中,已知an=3n-2,则该数列的前20项之和是?那个过程我不懂2.求4与36这两 2020-11-29 …
f(x)=x^3+3x^2+px,g(x)=x^3+qx^2+r,y=fx与y=gx的图像关于点(0 2021-01-11 …