早教吧作业答案频道 -->数学-->
因式分解:(1)(-xy²)²*(x²y)三次方÷(x²y的五次)(2)3(x+1)²-5(x+1)(x-1)+2x(x-1)(3)8a三次-18a(4)2(a+b)²-a-b(5)(m/m-2-m/m+2)*2-m/m注明:这里的/
题目详情
因式分解:
(1)(-xy²)² * (x²y)三次方 ÷(x²y的五次) (2)3(x+1)²-5(x+1)(x-1)+2x(x-1)
(3)8a三次-18a (4)2(a+b)²-a-b
(5)(m/m-2 - m/m+2)* 2-m/m
注明:这里的/表示分数线,*表示乘号,如果可以每题至少2部,
(1)(-xy²)² * (x²y)三次方 ÷(x²y的五次) (2)3(x+1)²-5(x+1)(x-1)+2x(x-1)
(3)8a三次-18a (4)2(a+b)²-a-b
(5)(m/m-2 - m/m+2)* 2-m/m
注明:这里的/表示分数线,*表示乘号,如果可以每题至少2部,
▼优质解答
答案和解析
(1)(-xy²)² * (x²y)三次方 ÷(x²y的五次)
=x^2y^4*x^6y^3/(x^2y^5)
=x^6y^2
(2)3(x+1)²-5(x+1)(x-1)+2x(x-1)
=3(x+1)²-3(x+1)(x-1)-[2(x+1)(x-1)-2x(x-1)]
=3(x+1)[(x+1)-(x-1)]-2(x-1)[(x+1)-x]
=6(x+1)-2(x-1)
=4x+8
(3)8a三次-18a
=2a(4a²-9)
=2a(2a-3)(2a+3)
(4)2(a+b)²-a-b
=2(a+b)²-(a+b)
=(a+b)(2a+2b-1)
(5)[m/(m-2)- m/(m+2)]* (2-m)/m
=m/(m-2)* (2-m)/m- m/(m+2)* (2-m)/m
=-1-(2-m)/(m+2)
=-4/(m+2)
=x^2y^4*x^6y^3/(x^2y^5)
=x^6y^2
(2)3(x+1)²-5(x+1)(x-1)+2x(x-1)
=3(x+1)²-3(x+1)(x-1)-[2(x+1)(x-1)-2x(x-1)]
=3(x+1)[(x+1)-(x-1)]-2(x-1)[(x+1)-x]
=6(x+1)-2(x-1)
=4x+8
(3)8a三次-18a
=2a(4a²-9)
=2a(2a-3)(2a+3)
(4)2(a+b)²-a-b
=2(a+b)²-(a+b)
=(a+b)(2a+2b-1)
(5)[m/(m-2)- m/(m+2)]* (2-m)/m
=m/(m-2)* (2-m)/m- m/(m+2)* (2-m)/m
=-1-(2-m)/(m+2)
=-4/(m+2)
看了 因式分解:(1)(-xy²)...的网友还看了以下:
若X与Y是相互独立的,证明E(Y|X)=E(Y). 2020-06-14 …
直线l1:x-2y+1=0关于直线l2:y-x=1的对称的直线l3方程本题答案为y-2x-2=0, 2020-06-27 …
继续请教!好吧好吧!是我输入错误……不好意思!理解一下,可能你觉得很简单,很低级……但我还是想说: 2020-07-23 …
已知y+m与x-n成正比例,(1)试说明:y是x的一次函数;(2)若x=2时,y=3;x=1时已知 2020-07-25 …
若f(x)是单调(或连续)函数且满足f(x+y)=f(x)+f(y)(x,y∈R)、则f(x)=x 2020-07-30 …
高数定积分证明题y(x)在[a,b]上连续,在(a,b)上可导,证明:y(x)=定积分(上限u(x 2020-08-03 …
正数x,y,zxyz=1证明:1/[x*x*(y+1)+1]+1/[y*y*(z+1)+1]+1/[ 2020-10-31 …
从定义上证明:y=x^2/3在除了0处可微如题不是证明在0处不可微,而是证明在除了0的地方可以微分 2020-11-01 …
1.若x,y为非零向量,则|x+y|〉|x-y|.请举反例2.证明若非零向量x,y满足|x+y|=| 2020-12-07 …
根据定义证明:y=x-1为当x→1是的无穷小. 2021-01-05 …