早教吧作业答案频道 -->数学-->
数列{an}满足a1=1,an+1=2^n+1*an/an+2^n(n∈N+)1)证明:数列{2^n/an}是等差数列2)求数列{an}的通项公式an3)设bn=n(n+1)a,求数列{bn}的前n项和Sn
题目详情
数列{an}满足a1=1,an+1=2^n+1*an/an+2^n (n∈N+)
1)证明:数列{2^n/an}是等差数列
2)求数列{an}的通项公式an
3)设bn=n(n+1)a,求数列{bn}的前n项和Sn
1)证明:数列{2^n/an}是等差数列
2)求数列{an}的通项公式an
3)设bn=n(n+1)a,求数列{bn}的前n项和Sn
▼优质解答
答案和解析
a(n+1)=2^(n+1)an/[an+2^n] 等式两边同时除以2^(n+1)
a(n+1)/2^(n+1)=2^(n+1)an/[2^(n+1)(an+2^n)]
a(n+1)/2^(n+1)=an/(an+2^n)]取倒数
2^(n+1)/a(n+1)=(an+2^n)/an
2^(n+1)/a(n+1)=2^n/an+1
2^(n+1)/a(n+1)-2^n/an=1
所以数列{2^n/an}是以1为公差的等差数列
2^n/an=2^1/a1+n-1
2^n/an=2+n-1
2^n/an=n+1取倒数
an=2^n/(n+1)
bn=n(n+1)an
=2^n/(n+1)*n(n+1)
=n*2^n
sn=1*2^1+2*2^2+3*2^3+.+n*2^n
2sn=1*2^2+2*2^3+3*2^4+.+(n-1)*2^n+n*2^(n+1)
sn-2sn=2^1+2^2+2^3+.+2^n-n*2^(n+1)
-sn=2*(1-2^n)/(1-2)-n*2^(n+1)
-sn=2^(n+1)-2-n*2^(n+1)
sn=n*2^(n+1)-2^(n+1)+2
=(n-1)*2^(n+1)+2
a(n+1)/2^(n+1)=2^(n+1)an/[2^(n+1)(an+2^n)]
a(n+1)/2^(n+1)=an/(an+2^n)]取倒数
2^(n+1)/a(n+1)=(an+2^n)/an
2^(n+1)/a(n+1)=2^n/an+1
2^(n+1)/a(n+1)-2^n/an=1
所以数列{2^n/an}是以1为公差的等差数列
2^n/an=2^1/a1+n-1
2^n/an=2+n-1
2^n/an=n+1取倒数
an=2^n/(n+1)
bn=n(n+1)an
=2^n/(n+1)*n(n+1)
=n*2^n
sn=1*2^1+2*2^2+3*2^3+.+n*2^n
2sn=1*2^2+2*2^3+3*2^4+.+(n-1)*2^n+n*2^(n+1)
sn-2sn=2^1+2^2+2^3+.+2^n-n*2^(n+1)
-sn=2*(1-2^n)/(1-2)-n*2^(n+1)
-sn=2^(n+1)-2-n*2^(n+1)
sn=n*2^(n+1)-2^(n+1)+2
=(n-1)*2^(n+1)+2
看了 数列{an}满足a1=1,a...的网友还看了以下:
设数列{an}的前n项和Sn=2an-2n,证明数列{an+1-2an}是等比数列(n、n+1为下 2020-04-05 …
已知数列an的前n项和为Sn,且Sn=n-2an-7,n属于正整数1.证明:an-1是等比数列2. 2020-05-13 …
已知数列An的前n项和为Sn,满足Sn=2An-n,(n∈正整数)(1)求An的通项公式(2)若数 2020-06-02 …
1.数列的通项公式为an=7n-2,这个数列是等差数列?说明理由2.如果等差数列{an}的第4项是 2020-06-04 …
已知数列的通项(n+1)(10/11)的n次方,试问数列有没有最大项已知数列{an}的通项an=( 2020-06-06 …
在青藏铁路线上行驶的每一列火车都有16节车厢,每节车厢长25.2m,宽3.10m,高3.5m,与普 2020-07-06 …
⑴若数列{an}是等差数列,证明sn=n(a1+an)/2拜托拉⑵数列{a}满足{a1=b,an=1 2020-10-31 …
勾股数的通式证明我发现了一个貌似的勾股数的通式它是k*(n)和k*((n^2)-1)/2和k*((n 2020-11-06 …
在青藏铁路线上行驶的每一列火车有16节车厢,每节车厢长25.2米,宽3.10米,与普通列车明显不同的 2020-11-08 …
求助数列b(n-1)*b(n+1)=n*bn+5,求bn通项数列b(n-1)*b(n+1)=n*bn 2020-12-29 …