早教吧作业答案频道 -->数学-->
设数列{an}的前n项和Sn=2an-2n,证明数列{an+1-2an}是等比数列(n、n+1为下标)证明数列{an+2}是等比数列求{an}的通项公式(n为下标)
题目详情
▼优质解答
答案和解析
Sn=2an-2n
S(n+1)=2a(n+1)-2(n+1)
所以a(n+1)=S(n+1)-Sn=2a(n+1)-2an-2
故a(n+1)-2an=2
所以数列{a(n+1)-2an}是一个常数列,且不为0,那么也是等比数列,公比是1
因为a(n+1)-2an=2
a(n+1)=2an+2
所以a(n+1)+2=2(an+2)
故数列{an+2}是等比数列,公比是q=2
因为a1=S1=2a1-2
所以a1=2
故an+2=(a1+2)*2^(n-1)=(2+2)*2^(n-1)=2^(n+1)
所以an=2^(n+1)-2
如果不懂,请Hi我,祝学习愉快!
S(n+1)=2a(n+1)-2(n+1)
所以a(n+1)=S(n+1)-Sn=2a(n+1)-2an-2
故a(n+1)-2an=2
所以数列{a(n+1)-2an}是一个常数列,且不为0,那么也是等比数列,公比是1
因为a(n+1)-2an=2
a(n+1)=2an+2
所以a(n+1)+2=2(an+2)
故数列{an+2}是等比数列,公比是q=2
因为a1=S1=2a1-2
所以a1=2
故an+2=(a1+2)*2^(n-1)=(2+2)*2^(n-1)=2^(n+1)
所以an=2^(n+1)-2
如果不懂,请Hi我,祝学习愉快!
看了 设数列{an}的前n项和Sn...的网友还看了以下:
在等比数列{an}中,a2=4,a5=32(n∈N*)(Ⅰ)求数列{an}的通项公式an;(Ⅱ)若 2020-05-13 …
在等比数列{an}中,a2=4,a5=32(n∈N*)(Ⅰ)求数列{an}的通项公式an;(Ⅱ)若 2020-05-13 …
已知递增数列{an}满足:a1=1,2a(n+1)=an+a(n+2)(n∈N*),且a1,a2, 2020-05-13 …
在等差数列{an}和等比数列{bn}中,a1=1,b1=2,bn>0(n∈N*),且b1,a2,b 2020-05-14 …
(1/2)有穷数列(an)的前n项和Sn=2n^2+n,现从中抽取某一项(不包括首项、末项)后,余 2020-06-13 …
已知数列{an}的前n项和Sn=n^2(n∈N),数列{bn}是各项均为正数的等比数列,b3=1, 2020-07-09 …
高中数列由递推求通项已知a1=1/3;a2=1/3;an=(1-2M)*N*N/(2*N*N-4* 2020-07-11 …
数列{an}满足a1=1,an=3an-1-4n+6(n≥2,n∈N*).(1)设bn=an-2n 2020-07-26 …
已知数列an的通项和为n(n+1)而数列bn的第n项bn,等于数列an的第2的n次方既bn=A下标 2020-07-29 …
一道高一数列题数列{an}的首项a1=3且对任意自然数n都有2/(an-an+1)=n(n+1)求 2020-07-30 …