早教吧作业答案频道 -->数学-->
二项式定理(1+x)+(1+x)^2+……+(1+x)^n=a0+a1+a2+……an若a1+a2+……a(n-1)=509-n,求n注意:a(n-1)中的(n-1)与an中的n都是角标
题目详情
二项式定理
(1+x)+(1+x)^2+……+(1+x)^n=a0+a1+a2+……an
若a1+a2+……a(n-1)=509-n,求n
注意:a(n-1)中的(n-1)与an中的n都是角标
(1+x)+(1+x)^2+……+(1+x)^n=a0+a1+a2+……an
若a1+a2+……a(n-1)=509-n,求n
注意:a(n-1)中的(n-1)与an中的n都是角标
▼优质解答
答案和解析
题目中的式子是不是:
(1+x)+(1+x)^2+……+(1+x)^n=a0+a1*x+a2*x^2+…… an*x^n呀?
如果是,令x=1,得到:
2+2^2+2^3+...+2^n=a0+a1+a2+...+an
很容易看出,只有(1+x)^n对x^n有贡献,也就是an=1
所以:
2^(n+1)-2-1=509-n
这个方程没有整数解.如果改成a1+a2+……a(n-1)=509
那么,2^9=512,n=8满足条件.
其实,这是一个等比数列,和为:
((1+x)^(n+1)-(1+x))/x
=x^n+C(n+1,n)x^(n-1)+...+C(n+1,k+1)x^k+...+C(n+1,2)x+C(n+1,1)-1
系数:
a(n-1)+...+a1=C(n+1,n)+...+C(n+1,1)-1
=C(n+1,n+1)+...+C(n+1,1)+C(n+1,0)-C(n+1,n+1)-C(n+1,0)-1
=2^(n+1)-3
一般的x^k系数为:
C(k,k)+C(k+1,k)+...+C(n,k)
所以:
C(k,k)+C(k+1,k)+...+C(n,k)=C(n+1,k+1)
(1+x)+(1+x)^2+……+(1+x)^n=a0+a1*x+a2*x^2+…… an*x^n呀?
如果是,令x=1,得到:
2+2^2+2^3+...+2^n=a0+a1+a2+...+an
很容易看出,只有(1+x)^n对x^n有贡献,也就是an=1
所以:
2^(n+1)-2-1=509-n
这个方程没有整数解.如果改成a1+a2+……a(n-1)=509
那么,2^9=512,n=8满足条件.
其实,这是一个等比数列,和为:
((1+x)^(n+1)-(1+x))/x
=x^n+C(n+1,n)x^(n-1)+...+C(n+1,k+1)x^k+...+C(n+1,2)x+C(n+1,1)-1
系数:
a(n-1)+...+a1=C(n+1,n)+...+C(n+1,1)-1
=C(n+1,n+1)+...+C(n+1,1)+C(n+1,0)-C(n+1,n+1)-C(n+1,0)-1
=2^(n+1)-3
一般的x^k系数为:
C(k,k)+C(k+1,k)+...+C(n,k)
所以:
C(k,k)+C(k+1,k)+...+C(n,k)=C(n+1,k+1)
 看了 二项式定理(1+x)+(1+...的网友还看了以下:
已知数列{an},满足a1=1,对任意n∈N*,有a1+3*a2+5*a3+.+(2n-1)*a= 2020-05-13 …
已知数列{an}中,a1=1,且an=nn−1an−1+2n•3n−2(n≥2,n∈N*).(I) 2020-05-13 …
若a1,a2,a3……a n均为正数.设M=(a1+a2+………+a n-1)(a2+a3+……a 2020-05-16 …
A1、A2、A3…An(n为正整数)都在数轴上.点A1在原点O的左边,且点A1与点O的距离是1;点 2020-06-06 …
已知数列{an}的通项公式为an=2^(n-1)+1则a1Cn^0+a2Cn^1+a3Cn^2+. 2020-07-09 …
已知数列{an}是等差数列,且满足:a1+a2+a3=6,a5=5;数列{bn}满足:bn-bn- 2020-07-09 …
已知a1=5,an=2an-1+3^n,求{an}的通项公式an=2an-1+3^n两边同加3^n 2020-07-22 …
数列an满足递推式(a(n+2))*an-(a(n+1))^2=(t^n)*(t-1),a1=1, 2020-08-01 …
a1=1/2,a1+a2+...+an=n^2an数学归纳法数列{An}满足A1=1/2,A1+A 2020-08-03 …
数列相邻四项间的递推问题已知数列{an}各项都是自然数,a1=0,a2=3,且a(n+1)+an=[ 2020-12-28 …