早教吧 育儿知识 作业答案 考试题库 百科 知识分享

将f(x)=2xarctanx-ln(x2+1)+1展成x的幂极数.

题目详情
将f(x)=2xarctanx-ln(x2+1)+1展成x的幂极数.
▼优质解答
答案和解析

因为:f′(x)=2arctanx+
2x
x2+1
2x
x2+1
=2arctanx,
故:f″(x)=
2
x2+1
=2
n=0
(−1)nx2n,x∈(-1,1),
所以:f′(x)=f′(x)−f′(0)=
x
0
f″(t)dt=2
n=0
(−1)n
x
0
t2ndt=2
n=0
(−1)n
2n+1
x2n+1,x∈(-1,1),
而:f(x)−1=f(x)−f(0)=
x
0
f′(t)dt=2
n=0
(−1)n
2n+1
x
0
t2n+1dt=2
n=0
(−1)n
(2n+1)(2n+2)
x2n+2,x∈(-1,1),
故有:f(x)=1+2
n=0
(−1)n
(2n+1)(2n+2)
x2n+2=1+2
n=1
(−1)n
2n(2n−1)
x2n,x∈(-1,1),
当x=±1时,级数2
n=1
(−1)n
2n(2n−1)
x2n绝对收敛,
从而知