早教吧作业答案频道 -->数学-->
1.y=x²-x+1/x²-x-1,求值域2.f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x)步骤祥细点,或大概思路
题目详情
1.y=x²-x+1/x²-x-1,求值域
2.f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x)
步骤祥细点,或大概思路
2.f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x)
步骤祥细点,或大概思路
▼优质解答
答案和解析
(1)
y
= (x² - x + 1)/(x² - x - 1)
= (x² - x - 1 + 2)/(x² - x - 1)
= 1 + 2/(x² - x - 1)
x² - x - 1
= (x - 1/2)² - 5/4 ≥ -5/4
所以 -4/5 ≤ 1/(x² - x - 1) < 0 或 1/(x² - x - 1) > 0
所以 -8/5 ≤ 2/(x² - x - 1) < 0 或 2/(x² - x - 1) > 0
所以 -3/5 ≤ 1 + 2/(x² - x - 1) < 1 或 1 + 2/(x² - x - 1) > 1
所以值域是 [-3/5 ,1)∪(1 ,+∞)
(2)
设 f(x) = kx + b
则 3k(x + 1) + 3b - 2k(x - 1) - 2b = 2x + 17
kx + 5k + b = 2x + 17
所以
k = 2
5k + b = 17
解得:
k = 2
b = 7
所以f(x) = 2x + 7
y
= (x² - x + 1)/(x² - x - 1)
= (x² - x - 1 + 2)/(x² - x - 1)
= 1 + 2/(x² - x - 1)
x² - x - 1
= (x - 1/2)² - 5/4 ≥ -5/4
所以 -4/5 ≤ 1/(x² - x - 1) < 0 或 1/(x² - x - 1) > 0
所以 -8/5 ≤ 2/(x² - x - 1) < 0 或 2/(x² - x - 1) > 0
所以 -3/5 ≤ 1 + 2/(x² - x - 1) < 1 或 1 + 2/(x² - x - 1) > 1
所以值域是 [-3/5 ,1)∪(1 ,+∞)
(2)
设 f(x) = kx + b
则 3k(x + 1) + 3b - 2k(x - 1) - 2b = 2x + 17
kx + 5k + b = 2x + 17
所以
k = 2
5k + b = 17
解得:
k = 2
b = 7
所以f(x) = 2x + 7
看了 1.y=x²-x+1/x²-...的网友还看了以下:
含绝对值的不等式|f(X)|>g(x)的解集.|f(X)|>g(x)的解集是“f(x)>g(x)或f 2020-03-30 …
定义在D上的函数y=f(x),若存在x0∈D,对任意的x∈D,都有f(x)≥f(x0)或f(x)≤ 2020-06-03 …
已知函数f(x)=ax^2+bx+c(a>0,b,c属于R)若函数f(x)的最小值是f(-1)=0 2020-06-06 …
积分的乘积与乘积的积分的关系积分的乘积与乘积的积分的关系假设f(x)>0;∫[根号f(x)]*[根 2020-06-10 …
高等数学博里叶级数的问题满足狄利克雷定理,当X是f(x)的间断点时,级数收敛于S(x)=1/2[f 2020-06-10 …
f(x)=2的x方(x大于等于3)或f(x)=f(x+1)(x小于3),则f(3)=?不好意思,问 2020-07-01 …
1.若f(x+m)=f(x-n)恒成立,则f(x)是周期性函数,周期为(m+n)2.若f(x+m) 2020-07-30 …
有关函数单调性与导数的关系对可导函数f(x)的对应导数f'(x)由高三公式可得解析式.若f(x)有 2020-08-01 …
洛必达法则问题洛必达法则的第三条是满足lim(x→a)f'(x)/F'(x)存在或者无穷大.当f'( 2020-11-24 …
为什么f(x)可以和f(1/x)或f(-x)互换?f(x)和f(x+1),f(-x),f(1/x)什 2021-01-16 …