早教吧作业答案频道 -->数学-->
已知一动圆M,恒过点F(1,0),且总与直线l:X=-1相切,求动圆圆心M的轨迹C的方程.还有一题,旅游公司为3个旅游团提供4条旅游路线,每个旅游团任选其中一条。求选择甲线路旅游团数的分布列和期
题目详情
已知一动圆M,恒过点F(1,0),且总与直线l:X=-1相切,求动圆圆心M的轨迹C的方程.
还有一题,旅游公司为3个旅游团提供4条旅游路线,每个旅游团任选其中一条。求选择甲线路旅游团数的分布列和期望。
还有一题,旅游公司为3个旅游团提供4条旅游路线,每个旅游团任选其中一条。求选择甲线路旅游团数的分布列和期望。
▼优质解答
答案和解析
观察题目,从“对称点仍在这圆上”看出X+2Y=0经过圆心(圆心就可以设为(-2b,b))所以可设圆的方程为(x+2b)^2+(y-b)^2=r^2
这里明显的有两个未知数:b和r
下面找两个方程:
1、A点可以带入得到一个方程(2+2b)^2+(3-b)^2=r^2
2、由(圆与直线X-Y+1=0相交的玄长为2倍根号2)看出
r^2=弦心距^2+(根号2)^2
而弦心距是X-Y+1=0到点(-2b,b)的距离
于是写出这个关系:r^2=(│-2b-b+1│/根号2)^2+2
即r^2=(3b-1)^2/2+2
联立方程组求解
以下就自己做了罢
这里明显的有两个未知数:b和r
下面找两个方程:
1、A点可以带入得到一个方程(2+2b)^2+(3-b)^2=r^2
2、由(圆与直线X-Y+1=0相交的玄长为2倍根号2)看出
r^2=弦心距^2+(根号2)^2
而弦心距是X-Y+1=0到点(-2b,b)的距离
于是写出这个关系:r^2=(│-2b-b+1│/根号2)^2+2
即r^2=(3b-1)^2/2+2
联立方程组求解
以下就自己做了罢
看了 已知一动圆M,恒过点F(1,...的网友还看了以下:
什么是母线圆柱与高有什么区别 2020-04-27 …
一个标准椭圆,建直角坐标系,圆上面的点p与坐标O点构成线段c,线段c与x轴所构成的角为z.点p沿椭 2020-05-16 …
已知一动圆M,恒过点F(1,0),且总与直线l:X=-1相切,求动圆圆心M的轨迹C的方程.还有一题 2020-05-16 …
(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外 2020-06-30 …
圆O1与圆O2相交于A、B两点,过点A作圆O1的切线交圆O2于点C,过点B作两圆割线,分别交圆O1 2020-07-31 …
1.点P为圆O外一点,PS、PT是两条切线,过点P作圆O的割线PAB,交圆O于A,B两点,与ST交 2020-07-31 …
已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心 2020-07-31 …
(本小题满分12分)(Ⅰ)一动圆与圆相外切,与圆相内切求动圆圆心的轨迹曲线E的方程,并说明它是什么 2020-07-31 …
1.设PMN是圆O通过圆心的一条割线,PAB是另一条割线,M,N,A,B是这两条割线与圆的交点,求证 2020-12-05 …
如图点0在角APB的角平分线上圆0与PA相切于点C求证直线PB与圆O相切,PO的延长线与圆0交于点E 2021-01-11 …