早教吧作业答案频道 -->数学-->
高一必修一数学难题(奇偶)已知f(x)在R上是偶函数,在R上是奇函数的g(x)过点(-1.1),(看补充)已知f(x)在R上是偶函数,在R上是奇函数的g(x)过点(-1.1),且g(x)=f(x-1),则f(2007
题目详情
高一必修一数学难题(奇偶)已知f(x)在R上是偶函数,在R上是奇函数的g(x)过点(-1.1),(看补充)
已知f(x)在R上是偶函数,在R上是奇函数的g(x)过点(-1.1),且g(x)=f(x-1),则f(2007)+f(2008)为
已知f(x)在R上是偶函数,在R上是奇函数的g(x)过点(-1.1),且g(x)=f(x-1),则f(2007)+f(2008)为
▼优质解答
答案和解析
解由g(x)是奇函数,
故g(-x)=-g(x).(1)
由g(x)=f(x-1)
则g(-x)=f(-x-1)
由(1)得
f(-x-1)=-f(x-1).(2)
由f(x)是偶函数,
f(-x-1)=f(-(x+1))=f(x+1)..(3)
由(2)和(3)得
f(x+1)=-f(x-1)
即f(x+2)=-f(x)
故f(x+4)=f(x+2+2)
=-f(x+2)
=-[-f(x)]
=f(x)
故f(x)的周期T=4
故f(2007)=f(3)
f(2008)=f(0)
即f(2007)+f(2008)
=f(3)+f(0)
=f(-1)+f(0)
由在R上是奇函数的g(x)过点(-1.1),
知g(-1)=1且g(0)=0
即g(1)=-1且g(0)=0
在g(x)=f(x-1)
令x=1
即g(1)=f(1-1)=f(0)=-1
再令x=0
即g(0)=f(0-1)=f(-1)=0
故
f(2007)+f(2008)
=f(3)+f(0)
=f(-1)+f(0)
=0+(-1)
=-1
故g(-x)=-g(x).(1)
由g(x)=f(x-1)
则g(-x)=f(-x-1)
由(1)得
f(-x-1)=-f(x-1).(2)
由f(x)是偶函数,
f(-x-1)=f(-(x+1))=f(x+1)..(3)
由(2)和(3)得
f(x+1)=-f(x-1)
即f(x+2)=-f(x)
故f(x+4)=f(x+2+2)
=-f(x+2)
=-[-f(x)]
=f(x)
故f(x)的周期T=4
故f(2007)=f(3)
f(2008)=f(0)
即f(2007)+f(2008)
=f(3)+f(0)
=f(-1)+f(0)
由在R上是奇函数的g(x)过点(-1.1),
知g(-1)=1且g(0)=0
即g(1)=-1且g(0)=0
在g(x)=f(x-1)
令x=1
即g(1)=f(1-1)=f(0)=-1
再令x=0
即g(0)=f(0-1)=f(-1)=0
故
f(2007)+f(2008)
=f(3)+f(0)
=f(-1)+f(0)
=0+(-1)
=-1
看了 高一必修一数学难题(奇偶)已...的网友还看了以下:
函数:对数函数(高一)已知f(x)=log4(4^x+1)+kx(k属于R)是偶函数(I)求k的值 2020-06-03 …
17.我们知道余弦函数是偶函数,且满足cosx+cosy=2cosx+y/2cosx-y/2.若R 2020-06-04 …
已知导函数是偶函数,那么原函数是偶函数?导函数=cos2x+cosx题里代了个-x进去。得到f'( 2020-06-07 …
已知函数f(x)=log2(4^x+1)+kx,(k∈R)是偶函数1.求K的值2.设函数g(x)= 2020-06-26 …
f(x)=|x+1|+|x-1|(x属于R),证明该函数是偶函数?再将函数解析式写成分段函数? 2020-07-12 …
已知导函数的奇偶性和周期性,证明原函数的奇偶性和周期性我们知道原函数是奇(偶)函数的时候,它的导函 2020-07-13 …
定义在实数集R上的函数f(x),对任意x∈,都有f(5+x)=f(5-x),以及f(10+x)+f( 2020-11-20 …
已知f(x)是定义在R上的函数,且满足f(x)+f(x-1)=1,当x属于[0,1],有f(x)=x 2020-12-08 …
已知函数f(x)=|x+1|+|x-1|(x∈R).(1)证明:f(x)函数是偶函数;(2)利用绝对 2020-12-08 …
已知函数f(x)=|x+1|+|x-1|(x∈R).(1)证明:f(x)函数是偶函数;(2)利用绝对 2020-12-08 …