早教吧作业答案频道 -->数学-->
∫∫(x^2+y^2)dS,∑为面z=√(x^2+y^2 )及平面z=1所围成的立体的表面.如图.
题目详情
∫∫(x^2+y^2)dS,∑为面z=√(x^2+y^2 )及平面z=1所围成的立体的表面.
如图.

如图.

▼优质解答
答案和解析
∑有两部分构成,∑1为锥面,∑2为z=1这个平面
先算∑1:方程为z=√(x^2+y^2 )
dz/dx=x/√(x^2+y^2 ),dz/dy=y/√(x^2+y^2 )
dS=√(1+(dz/dx)²+(dz/dy)²)=√2dxdy
∫∫ (x²+y²) dS
=√2∫∫ (x²+y²) dxdy
=√2∫∫ r²*r drdθ
=√2∫[0→2π]dθ∫[0→1] r³ dr
=√2π/2
先算∑2:方程为z=1,dS=dxdy
∫∫ (x²+y²) dS
=∫∫ (x²+y²) dxdy
=∫∫ r²*r drdθ
=∫[0→2π]dθ∫[0→1] r³ dr
=π/2
最后结果为:√2π/2+π/2=π/2(√2+1)
先算∑1:方程为z=√(x^2+y^2 )
dz/dx=x/√(x^2+y^2 ),dz/dy=y/√(x^2+y^2 )
dS=√(1+(dz/dx)²+(dz/dy)²)=√2dxdy
∫∫ (x²+y²) dS
=√2∫∫ (x²+y²) dxdy
=√2∫∫ r²*r drdθ
=√2∫[0→2π]dθ∫[0→1] r³ dr
=√2π/2
先算∑2:方程为z=1,dS=dxdy
∫∫ (x²+y²) dS
=∫∫ (x²+y²) dxdy
=∫∫ r²*r drdθ
=∫[0→2π]dθ∫[0→1] r³ dr
=π/2
最后结果为:√2π/2+π/2=π/2(√2+1)
看了 ∫∫(x^2+y^2)dS,...的网友还看了以下:
请问求原点到曲面在z^2=xy+x-y+4的最短距离,建立方程L(x,y,z,c)=(x^2+y^ 2020-05-16 …
∫∫∫x*e^(x^2+y^2+z^2)^2dv 体积由球面x^2+y^2+z^2=1与球面x^2 2020-05-16 …
设平面Z为x=0,y=0,z=0,x=1,y=1,z=1所围成的立方体表面取外侧,则曲面积分... 2020-06-12 …
计算由曲面z=4-x^2-y^2与z=x^2+y^2所围立体的体积.计算由曲面z=4-x^2-y^ 2020-06-14 …
设f(x)为连续函数,f(0)=a,F(t)=∫∫∫Ω{z-f(x^2+y^2+z^2)]dv,其 2020-06-15 …
z=2-(x^2+y^2)这个是什么图形啊因为在做曲面积分的题目最后要换成极坐标做的但看不出R的上 2020-06-15 …
关于级数和函数第二类曲面积分的问题设S为平面x+y+z=1位于球面x^2+y^2+z^2=1内的上 2020-07-31 …
设直线l:x+y+b=0x+ay?z?3=0在平面π上,而平面π与曲面z=x2+y2相切于点(1,- 2020-10-30 …
xyz=1,x+y+z=2,x^2+y^2+z^2=3,求x,y,z我解:xy=1/z,x+y=2- 2020-10-31 …
有一道三重积分的题目,其Ω是由曲面Z^2=K(X^2+Y^2)和Z=5构成的其中K是一个常数,我想问 2020-12-25 …