早教吧作业答案频道 -->数学-->
如图:在△ABC中,∠BAC=90°,AB=AC,点D、E在BC上,且∠DAE=45°.求证:CD²+BE²=DE²
题目详情
如图:在△ABC中,∠BAC=90°,AB=AC,点D、E在BC上,且∠DAE=45°.求证:CD²+BE²=DE²
▼优质解答
答案和解析
恩,这题出得比较有技术含量,做出来很有成就感
证明:
在△ABC的AB边向外作∠BAF=∠DAC
在射线AF上截取AF=AC
连接BF,EF
在△ADC和△AFB中,
∠BAF=∠DAC,AB=AC,AF=AC
∴△ADC≌△AFB
∴BF=DC
又由△ABC是Rt△
∠FAE=∠BAF+∠BAE=∠DAC+∠BAE=90°-∠DAE=45°
又∵AF=AD,AE公用
∴△FAE≌△DAE
∴EF=ED
∵△ADC≌△AFB
∴∠FBA=∠C=45°
∠FBE=∠FBA+∠ABC=90°
∴EF²=BF²+BE²
又∵BF=DC,EF=ED
∴DE²=CD²+BE²
写得够清楚吧?懂了么?
证明:
在△ABC的AB边向外作∠BAF=∠DAC
在射线AF上截取AF=AC
连接BF,EF
在△ADC和△AFB中,
∠BAF=∠DAC,AB=AC,AF=AC
∴△ADC≌△AFB
∴BF=DC
又由△ABC是Rt△
∠FAE=∠BAF+∠BAE=∠DAC+∠BAE=90°-∠DAE=45°
又∵AF=AD,AE公用
∴△FAE≌△DAE
∴EF=ED
∵△ADC≌△AFB
∴∠FBA=∠C=45°
∠FBE=∠FBA+∠ABC=90°
∴EF²=BF²+BE²
又∵BF=DC,EF=ED
∴DE²=CD²+BE²
写得够清楚吧?懂了么?
看了 如图:在△ABC中,∠BAC...的网友还看了以下:
一道二项式的题1设A=3^7+C(2,7)·3^5+C(4,7)·3^3+C(6,7)·3,B=C 2020-05-21 …
勾股定理的扩展公式勾股定理:a^2+b^2=c^2,如:3^2+4^2=5^2.我无意中发现一个扩 2020-06-10 …
在平面直角坐标系xoy中,已知A(0,b),圆C的半径为1,圆心在直线l:y=2x-4上.1.若在 2020-06-14 …
已知下列命题:1在△ABC中∠A=∠C-∠B则△ABC为直角三角形2在△ABC中若∠A:∠B:∠C 2020-07-04 …
1.在三角形abc中,证明a/b-b/a=c(CosB/b-CosA/a)2.在三角形abc中,已 2020-07-21 …
在△ABC中,周长2P=7.5cm,且sinA:sinB:sinC在△ABC中,周长为7.5cm, 2020-07-27 …
在三角形ABC中,周长为7.5cm,且sinA:sinB:sinC=4:5:6,那么A:B:C=4 2020-07-27 …
1.已知方程x^2-(bcosA)x+acosB=0的两根之和等于两根之积,且a,b为△ABC的两 2020-08-02 …
f(x)在[0,1]上二阶可微且f'(0)=f'(1)=0,则存在c,使得f''(c)≥4|f(1) 2020-11-03 …
用公式如何表示:(h+l+o+c)/4在连续10天内的振幅小于10%; 2020-11-27 …