早教吧作业答案频道 -->数学-->
1.已知方程x^2-(bcosA)x+acosB=0的两根之和等于两根之积,且a,b为△ABC的两边,AB为边a,b的对角,试判断△ABC的形状?2.在△ABC中,求证a^2+b^2/c^2=sin^2A+sin^2B/sin^2C.3.在△ABC中,若a^4+b^4+c^4=2c^2(a^2+b^2),求c.4.在
题目详情
1.已知方程x^2-(bcosA)x+acosB=0的两根之和等于两根之积,且a,b为△ABC的两边,AB为边a,b的对角,试判断△ABC的形状?2.在△ABC中,求证a^2+b^2/c^2=sin^2A+sin^2B/sin^2C.3.在△ABC中,若a^4+b^4+c^4=2c^2(a^2+b^2),求c.4.在△ABC中,求证:a^2+b^2+c^2=2(bccosA+accosB+abcosC)
▼优质解答
答案和解析
1.
由根与系数关系,两根之和=bcosA,两根之积=acosB,二者相等:bcos=acosB
==> a/b=cosB/cosA,而由正弦定理:a/sinA=b/sinB ==> a/b=sinA/sinB
因此:sinA/sinB=cosB/cosA ==> sinAcosA=sinBcosB ==>sin2A=sin2B ==> sin2A-sin2B=0,sin2A-sin2B=2[cos(2A+2B)/2]sin[(2A-2B)/2]=2cos(A+B)sin(A-B) ==> cos(A+B)sin(A-B)=0 ==> cos(A+B)=0或sin(A-B)=0 ==> A+B=π/2,或A-B=0即A=B ==> △ABC是直角或等腰三角形.
2.
你的a^2+b^2/c^2=sin^2A+sin^2B/sin^2C应该是指:(a^2+b^2)/c^2=[(sinA)^2+(sinB)^2]/(sinC)^2吧,是的话证明如下:
正弦定理:a/sinA=b/sinB=c/sinC,设它们都等于K:a/sinA=b/sinB=c/sinC=K,则:a=KsinA,b=KsinB,c=KsinC
(a^2+b^2)/c^2
=[K^2(sinA)^2+K^2(sinB)^2]/K^2(sinC)^2
=K^2[(sinA)^2+(sinB)^2]/K^2(sinC)^2
=[(sinA)^2+(sinB)^2]/(sinC)^2
3.
因为a^4+b^4+c^4=2c^2(a^2+b^2),所以:
[c^2-(a^2+b^2)]^2
=c^4-2c^2(a^2+b^2)+(a^2+b^2)^2
=c^4-(a^4+b^4+c^4)+a^4+2a^2b^2+b^4
=(a^4+b^4+c^4)-(a^4+b^4+c^4)+2a^2b^2
=2a^2b^2
=(√2ab)^2
两边开方得:
c^2-(a^2+b^2)=±√2ab ==> c^2=a^2+b^2±√2ab
因此:c=√(a^2+b^2±√2ab)=√(a^2±√2ab+b^2)
也可表示为:c=√(a^2+√2ab+b^2),或c=√(a^2-√2ab+b^2)
(√2表示根号二,√()表示对括号里的代数式开根号)
4.
余弦定理:
b^2+c^2-2bccosA=a^2 ………………………………(1)
c^2+a^2-2cacosB=b^2 ………………………………(2)
a^2+b^2-2abcosC=c^2 ………………………………(3)
(1)+(2)+(3)得:
b^2+c^2-2bccosA+c^2+a^2-2cacosB+a^2+b^2-2abcosC=a^2+b^2+c^2
移项化简:
b^2+c^2+c^2+a^2+a^2+b^2-(a^2+b^2+c^2)=2bccosA+2cacosB+2abcosC
2(b^2+c^2+a^2)-(a^2+b^2+c^2)=2(bccosA+cacosB+abcosC)
即:a^2+b^2+c^2=2(bccosA+cacosB+abcosC)
由根与系数关系,两根之和=bcosA,两根之积=acosB,二者相等:bcos=acosB
==> a/b=cosB/cosA,而由正弦定理:a/sinA=b/sinB ==> a/b=sinA/sinB
因此:sinA/sinB=cosB/cosA ==> sinAcosA=sinBcosB ==>sin2A=sin2B ==> sin2A-sin2B=0,sin2A-sin2B=2[cos(2A+2B)/2]sin[(2A-2B)/2]=2cos(A+B)sin(A-B) ==> cos(A+B)sin(A-B)=0 ==> cos(A+B)=0或sin(A-B)=0 ==> A+B=π/2,或A-B=0即A=B ==> △ABC是直角或等腰三角形.
2.
你的a^2+b^2/c^2=sin^2A+sin^2B/sin^2C应该是指:(a^2+b^2)/c^2=[(sinA)^2+(sinB)^2]/(sinC)^2吧,是的话证明如下:
正弦定理:a/sinA=b/sinB=c/sinC,设它们都等于K:a/sinA=b/sinB=c/sinC=K,则:a=KsinA,b=KsinB,c=KsinC
(a^2+b^2)/c^2
=[K^2(sinA)^2+K^2(sinB)^2]/K^2(sinC)^2
=K^2[(sinA)^2+(sinB)^2]/K^2(sinC)^2
=[(sinA)^2+(sinB)^2]/(sinC)^2
3.
因为a^4+b^4+c^4=2c^2(a^2+b^2),所以:
[c^2-(a^2+b^2)]^2
=c^4-2c^2(a^2+b^2)+(a^2+b^2)^2
=c^4-(a^4+b^4+c^4)+a^4+2a^2b^2+b^4
=(a^4+b^4+c^4)-(a^4+b^4+c^4)+2a^2b^2
=2a^2b^2
=(√2ab)^2
两边开方得:
c^2-(a^2+b^2)=±√2ab ==> c^2=a^2+b^2±√2ab
因此:c=√(a^2+b^2±√2ab)=√(a^2±√2ab+b^2)
也可表示为:c=√(a^2+√2ab+b^2),或c=√(a^2-√2ab+b^2)
(√2表示根号二,√()表示对括号里的代数式开根号)
4.
余弦定理:
b^2+c^2-2bccosA=a^2 ………………………………(1)
c^2+a^2-2cacosB=b^2 ………………………………(2)
a^2+b^2-2abcosC=c^2 ………………………………(3)
(1)+(2)+(3)得:
b^2+c^2-2bccosA+c^2+a^2-2cacosB+a^2+b^2-2abcosC=a^2+b^2+c^2
移项化简:
b^2+c^2+c^2+a^2+a^2+b^2-(a^2+b^2+c^2)=2bccosA+2cacosB+2abcosC
2(b^2+c^2+a^2)-(a^2+b^2+c^2)=2(bccosA+cacosB+abcosC)
即:a^2+b^2+c^2=2(bccosA+cacosB+abcosC)
看了 1.已知方程x^2-(bco...的网友还看了以下:
小明和小彬约定,两人各自在0、1、2、3、4这五个数中任选一个数字写在纸片上.试求两人写的数字之和 2020-04-11 …
关于电场能的后天要考试了两个面均为a的平方的平板放置并垂直于z轴,其中一平板位于x=0处,另一平板 2020-04-13 …
若a大于b大于0,c小于d小于0,e小于0,求证(a减c)的平方分之e大于(b减d)平方分之e,考 2020-06-03 …
下面各数是分数的化成小数不能化成有限小数的保留两位小数,是小数的化成分数.0.5=1又15分之4= 2020-06-27 …
关于高中概率的题在一招聘会上,有甲乙丙三人面试,面试有两轮,第一轮通才能进行第二轮,两轮面试相互独 2020-07-06 …
一道微积分的题证明:(1)tanx>x+(x^3/3)x∈(0,π/2)(2)利用(tanx)的导 2020-07-17 …
甲醛测试盒自测时暴露时间80分钟,结果会怎么样?家里2012年12月份装修完毕,前天刚刚搬入新家,装 2020-11-14 …
有理数的除法(填空题)1.若a分之|a|=a()0;若a分之|a|=-1,则a()0.2.如果a、b 2020-11-21 …
求解一道概率题假设目标出现在射程之内的概率为0.7,这时一次射击命中目标的概率为0.6.试求两次独立 2020-12-05 …
有没有简易算法?甲乙丙三个人去参加比赛(面试和笔试、两个都过才会被录取)、面试通过概率笔试通过概率甲 2020-12-22 …